文档章节

LIRe 源代码分析 4:建立索引(DocumentBuilder)[以颜色布局为例]

雷霄骅
 雷霄骅
发布于 2014/08/16 13:57
字数 1171
阅读 60
收藏 0

【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>>

注:此前写了一系列的文章,分析LIRe的源代码,在此列一个列表:

LIRe 源代码分析 1:整体结构
LIRe 源代码分析 2:基本接口(DocumentBuilder)
LIRe 源代码分析 3:基本接口(ImageSearcher)
LIRe 源代码分析 4:建立索引(DocumentBuilder)[以颜色布局为例]
LIRe 源代码分析 5:提取特征向量[以颜色布局为例]
LIRe 源代码分析 6:检索(ImageSearcher)[以颜色布局为例]
LIRe 源代码分析 7:算法类[以颜色布局为例]


前几篇文章介绍了LIRe 的基本接口:

LIRe 源代码分析 1:整体结构

LIRe 源代码分析 2:基本接口(DocumentBuilder)

LIRe 源代码分析 3:基本接口(ImageSearcher)

现在来看一看它的实现部分,本文先来看一看建立索引((DocumentBuilder))部分。不同的特征向量提取方法的建立索引的类各不相同,它们都位于“net.semanticmetadata.lire.impl”中,如下图所示:


由图可见,每一种方法对应一个DocumentBuilder和一个ImageSearcher,类的数量非常的多,无法一一分析。在这里仅分析一个比较有代表性的:颜色布局。

颜色直方图建立索引的类的名称是ColorLayoutDocumentBuilder,该类继承了AbstractDocumentBuilder,它的源代码如下所示:

/*
 * This file is part of the LIRe project: http://www.semanticmetadata.net/lire
 * LIRe is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * LIRe is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with LIRe; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * We kindly ask you to refer the following paper in any publication mentioning Lire:
 *
 * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval 鈥�
 * An Extensible Java CBIR Library. In proceedings of the 16th ACM International
 * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008
 *
 * http://doi.acm.org/10.1145/1459359.1459577
 *
 * Copyright statement:
 * --------------------
 * (c) 2002-2011 by Mathias Lux (mathias@juggle.at)
 *     http://www.semanticmetadata.net/lire
 */
package net.semanticmetadata.lire.impl;

import net.semanticmetadata.lire.AbstractDocumentBuilder;
import net.semanticmetadata.lire.DocumentBuilder;
import net.semanticmetadata.lire.imageanalysis.ColorLayout;
import net.semanticmetadata.lire.utils.ImageUtils;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;

import java.awt.image.BufferedImage;
import java.util.logging.Logger;

/**
 * Provides a faster way of searching based on byte arrays instead of Strings. The method
 * {@link net.semanticmetadata.lire.imageanalysis.ColorLayout#getByteArrayRepresentation()} is used
 * to generate the signature of the descriptor much faster.
 * User: Mathias Lux, mathias@juggle.at
 * Date: 30.06.2011
 */
public class ColorLayoutDocumentBuilder extends AbstractDocumentBuilder {
    private Logger logger = Logger.getLogger(getClass().getName());
    public static final int MAX_IMAGE_DIMENSION = 1024;

    public Document createDocument(BufferedImage image, String identifier) {
        assert (image != null);
        BufferedImage bimg = image;
        // Scaling image is especially with the correlogram features very important!
        // All images are scaled to guarantee a certain upper limit for indexing.
        if (Math.max(image.getHeight(), image.getWidth()) > MAX_IMAGE_DIMENSION) {
            bimg = ImageUtils.scaleImage(image, MAX_IMAGE_DIMENSION);
        }
        Document doc = null;
        logger.finer("Starting extraction from image [ColorLayout - fast].");
        ColorLayout vd = new ColorLayout();
        vd.extract(bimg);
        logger.fine("Extraction finished [ColorLayout - fast].");

        doc = new Document();
        doc.add(new Field(DocumentBuilder.FIELD_NAME_COLORLAYOUT_FAST, vd.getByteArrayRepresentation()));
        if (identifier != null)
            doc.add(new Field(DocumentBuilder.FIELD_NAME_IDENTIFIER, identifier, Field.Store.YES, Field.Index.NOT_ANALYZED));

        return doc;
    }
}


从源代码来看,其实主要就一个函数:createDocument(BufferedImage image, String identifier),该函数的流程如下所示:

1.如果输入的图像分辨率过大(在这里是大于1024),则将图像缩小。

2.新建一个ColorLayout类型的对象vd。

3.调用vd.extract()提取特征向量。

4.调用vd.getByteArrayRepresentation()获得特征向量。

5.将获得的特征向量加入Document,返回Document。


其实其他方法的DocumentBuilder的实现和颜色直方图的DocumentBuilder差不多。例如CEDDDocumentBuilder的源代码如下所示:

/*
 * This file is part of the LIRe project: http://www.semanticmetadata.net/lire
 * LIRe is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * LIRe is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with LIRe; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * We kindly ask you to refer the following paper in any publication mentioning Lire:
 *
 * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval 鈥�
 * An Extensible Java CBIR Library. In proceedings of the 16th ACM International
 * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008
 *
 * http://doi.acm.org/10.1145/1459359.1459577
 *
 * Copyright statement:
 * ~~~~~~~~~~~~~~~~~~~~
 * (c) 2002-2011 by Mathias Lux (mathias@juggle.at)
 *     http://www.semanticmetadata.net/lire
 */
package net.semanticmetadata.lire.impl;

import net.semanticmetadata.lire.AbstractDocumentBuilder;
import net.semanticmetadata.lire.DocumentBuilder;
import net.semanticmetadata.lire.imageanalysis.CEDD;
import net.semanticmetadata.lire.utils.ImageUtils;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;

import java.awt.image.BufferedImage;
import java.util.logging.Logger;

/**
 * Provides a faster way of searching based on byte arrays instead of Strings. The method
 * {@link net.semanticmetadata.lire.imageanalysis.CEDD#getByteArrayRepresentation()} is used
 * to generate the signature of the descriptor much faster.
 * User: Mathias Lux, mathias@juggle.at
 * Date: 12.03.2010
 * Time: 13:21:35
 *
 * @see GenericFastDocumentBuilder
 * @deprecated use GenericFastDocumentBuilder instead.
 */
public class CEDDDocumentBuilder extends AbstractDocumentBuilder {
    private Logger logger = Logger.getLogger(getClass().getName());
    public static final int MAX_IMAGE_DIMENSION = 1024;

    public Document createDocument(BufferedImage image, String identifier) {
        assert (image != null);
        BufferedImage bimg = image;
        // Scaling image is especially with the correlogram features very important!
        // All images are scaled to guarantee a certain upper limit for indexing.
        if (Math.max(image.getHeight(), image.getWidth()) > MAX_IMAGE_DIMENSION) {
            bimg = ImageUtils.scaleImage(image, MAX_IMAGE_DIMENSION);
        }
        Document doc = null;
        logger.finer("Starting extraction from image [CEDD - fast].");
        CEDD vd = new CEDD();
        vd.extract(bimg);
        logger.fine("Extraction finished [CEDD - fast].");

        doc = new Document();
        doc.add(new Field(DocumentBuilder.FIELD_NAME_CEDD, vd.getByteArrayRepresentation()));
        if (identifier != null)
            doc.add(new Field(DocumentBuilder.FIELD_NAME_IDENTIFIER, identifier, Field.Store.YES, Field.Index.NOT_ANALYZED));

        return doc;
    }
}




本文转载自:http://blog.csdn.net/leixiaohua1020/article/details/13774637

雷霄骅

雷霄骅

粉丝 212
博文 419
码字总数 2129
作品 4
朝阳
程序员
私信 提问
Lucene图片搜索--LIRE

LIRE(Lucene Image REtrieval)提供一种的简单方式来创建基于图像特性的Lucene索引。利用该索引就能够构建一个基于内容的图像检索(content- based image retrieval,CBIR)系统,来搜索相似的...

匿名
2008/11/16
13.5K
1
推荐9个Java的搜索引擎框架

在这个信息相当繁杂的互联网时代,我们已经学会了如何利用搜索引擎这个强大的利器来找寻目标信息,比如你会在Google上搜索情人节如何讨女朋友欢心,你也会在百度上寻找正规的整容医疗机构(尽...

孟飞阳
2016/06/19
208
0
9个基于Java的搜索引擎框架

在这个信息相当繁杂的互联网时代,我们已经学会了如何利用搜索引擎这个强大的利器来找寻目标信息,比如你会在Google上搜索情人节如何讨女朋友欢心,你也会在百度上寻找正规的整容医疗机构(尽...

zh119893
2014/09/04
488
0
9个基于Java的搜索引擎框架

9个基于Java的搜索引擎框架 [导读] Lucene是目前最受欢迎的Java全文搜索框架,准确地说,它是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎。Lucene为开发人员...

引鸩怼孑
2015/07/30
876
0
LIRE的使用:搜索相似的图片

LIRE(Lucene Image REtrieval)提供一种的简单方式来创建基于图像特性的Lucene索引。利用该索引就能够构建一个基于内容的图像检索(content- based image retrieval,CBIR)系统,来搜索相似的...

雷霄骅
2013/09/20
655
0

没有更多内容

加载失败,请刷新页面

加载更多

如何管stderr,而不是stdout?

我有一个要写入信息的程序stdout和stderr ,我需要grep通过什么是未来标准错误 ,而忽视标准输出 。 我当然可以分2步完成: command > /dev/null 2> temp.filegrep 'something' temp.file...

技术盛宴
21分钟前
4
0
centos7.5上通过docker安装并运行mysql5.7

1. docker pull mysql:5.7 2. docker run --name mysql5.7 -p 3306:3306 -e MYSQL_ROOT_PASSWORD=123456 -d mysql:5.7...

Ryub
25分钟前
5
0
什么是比赛条件?

在编写多线程应用程序时,遇到的最常见问题之一是竞争条件。 我对社区的问题是: 什么是比赛条件? 您如何检测到它们? 您如何处理它们? 最后,如何防止它们发生? #1楼 当设备或系统试图同...

javail
36分钟前
5
0
SpringMVC源码分析-DispatcherServlet-init方法分析

上一篇:SpringMVC源码分析-DispatcherServlet实例化干了些什么 先吐槽一下。。。写了两小时的博客突然被俺家小屁孩按了刷新,东西不见了,建议OSCHINA能够自动定时保存啊。让我先安静一下。...

特拉仔
44分钟前
5
0
python协程 生成器

协程,又称微线程,纤程。英文名Coroutine。 线程是系统级别的它们由操作系统调度,而协程则是程序级别的由程序根据需要自己调度。在一个线程中会有很多函数,我们把这些函数称为子程序,在子...

沙门行道
54分钟前
5
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部