文档章节

数据化决策 | 如何让数据产品”生长”出来?

乐搏学院
 乐搏学院
发布于 2016/10/11 11:20
字数 2076
阅读 10
收藏 0

作为数据产品经理,经常会碰到这种情况:费了很大功夫,做了复杂的模型产品后,业务人员却觉得不好用、不会用、不愿用,对于这个问题有没有什么好的解决办法?

数据产品其实不是一个孤立的系统,而是一个有机体,它在与数据、业务、人员结合中不断生长壮大。今天通过一个风控产品的小案例,来看看如何一步一步的了解用户需求,解决用户问题,推广数据决策的理念,让数据产品价值不断提升。

1 记录数据

SC公司是一家为商户提供支付、营销服务的创业企业,业务增长非常快,在其支付服务业务中,会出现套现、欺诈等风险问题,需要风控部分的人员侦测处理,在支付环节,从交易成功到给商户拿到钱有一天左右清算时间,所以除了实时的拒绝交易之外,对于更加复杂,不容易立刻确认的套现欺诈行为,还可以通过人工方法检出查证,事后处理。

这种情况下,最早支持风控的数据产品是提供的每日的交易明细数据,同时按照一些经验规则,把一些可疑的交易挑选出来,供风控人员审查,每一个挑出来的交易就是一个欺诈行为的线索,通过这个线索去寻找确认欺诈的商户。

从人们分析和决策流程上来看,这个阶段的数据产品提供的是“记录”功能,整个决策过程后几步都是要人工完成的:

汇总:将看到的各个数据在头脑里汇集,模糊计算历史金额,交易占比等信指标息;

预测:根据一些经验指标判断线索的实际风险概率;

决策:根据金额大小,风险可能性来给出处理措施,比如关户,关卡等;

执行:根据处理决策,提取相关名单,通知IT团队来进行具体处理。

对于每次一条可疑线索,风控人员需要考察交易的多方面信息,还要翻找客户相关各个方面的信息,历史行为,地区,类型各个方面的信息,每条线索判断时间较长,有时候风控人员也会漏看一些信息,造成判断失误。

这个阶段要解决的问题是如何让风控人员更快速的处理每一个线索。

2 数据汇总

为了解决这个问题,通过和风控业务人员沟通,根据他们对每个线索要分析主要方向,为每个客户编制一个统一的用户画像标签体系,如上图中的X1,X2等标签,标签分为两类历史上的标签,比如历史交易金额、交易次数、中位数、交易类型等,这些可以在夜里预算好,对于当日的标签通过数据实时更新。

这样在出现一条线索的时候,风控人员就可以在一个页面快速的浏览所有的相关要素,同时给出对于线索的定性判断,包括高风险、中风险、低风险等判定结果。

这个阶段,机器完成了数据记录和汇总工作,而风控人员依然要依靠人脑去建立模型,同时进行预测和决策。

增加这些功能后,风控人员处理每个线索的时间减少了,提高了效率。经过一段时间通过数据分析发现,未被处理的线索比例却依然在不断增加,原因是业务增加速度比人员增加的快,由于这些线索是随机分配给业务人员的,在没有被鉴别的线索里面,依然会有很多有风险的交易,风险覆盖率低。

接下来数据产品要解决的就是提高风控覆盖率的问题。

3 模型预测

为了解决覆盖率低的问题,设计通过评分模型的方法,对每一个线索进行评分,把风险高的排在前面,让风控人员首先首先处理较高风险线索,至少不要漏掉严重的高风险问题。

这时候上一阶段积累的数据就发挥了作用,因为过去业务人员根据线索的各个要素,做过很多真实的判断和进一步的调查,有很多现实案例,又有判定结果,也有线索特征,这就是建模的好材料,有Y变量,也有X变量,需要做的就是根据这些历史数据,进行分析建模,让机器给每个线索评分,评估轻重缓急。

为了让模型推行的更平稳顺利,在正式给业务人员用之前,还要有一个试用的过程,这里重点的就是不能把评分给风控人员看,依然需要随机的分配线索,同时进行事后跟踪检测。在模型相对稳定后,再让系统根据风险评分排序,让风控人员优先处理高风险的线索。

做了这一步之后,在不增加风控人员的前提下,发现风险情况的效率大大增加,特别是有重大风险的情况,基本不会被漏掉。同时风控人员在分析线索之后,将采取关闭商户,关闭卡交易等处置措施,这些也都会被记录在系统之中。这个阶段机器可以解决数据的记录、汇总、综合预测的工作,而人从事决策和执行的过程。

这个流程采用之后,还要继续通过数据分析寻找可以改进的环节。分析发现业务人员处置规则,也有不稳定之处,有人严格,有人比较松,如何才能让处置的规则也稳定下来,同时可以不断修订改进呢?这就是成了需要解决的问题。

4 决策推荐

为了让处理规则稳定和统一,首先和风控部门一起讨论,梳理出了具体决策规则,比如根据风险分数和交易金额分为几个群组,有不同的处理方法。

接着将这些规则部署到系统中之后,系统会根据规则推荐出不同的处理方法,风控人员如果觉的可行,可以选择同意;但是如果觉的不合适,给出改变的理由,并记录在案。

这个反馈结果可以帮助风控团队,不断总结,修订规则,同时也将风控人员的经验不断沉淀到系统中,就算有人员的变动,也只需要比较短的培训可以上岗工作。

5 人机合一

在以上的各个步骤都稳定可控之后,对于比较明显的风险线索,机器可以自动的进行拉黑卡,调整额度,关户等操作,人们所做的事情就是监督系统的运行状况,同时不断分析新的情况,优化系统。

一方面风控团队的人员减少了人员,有些原来做简单重复工作的人员转岗去了其他团队,而留下来的风控人员也不是每天进行大量重复的体力劳动,而是思考风控工作改进的措施,这样既提高了工作的满意度,降低了流失率,也提高了工作的效率。

让机器的归机器,人工的归人工,机器可以帮助人们从事重复的、大量、高速的工作,而人工可以从事研究、管理、分析的工作,两边的结合才是最好的。

结束语

免费学习更多大数据精品课,登录乐搏学院官网http://h.learnbo.cn/

作者:王安来源:36大数据

 

本文转载自:

乐搏学院
粉丝 9
博文 526
码字总数 707467
作品 0
丰台
程序员
私信 提问
《智能商业》读后感作文5000字

《智能商业》读后感作文5000字: 阿里巴巴首席军师曾鸣的力作,结合其在阿里巴巴和湖畔大学的思考,对未来的智能商业做了深入浅出的阐述。 其中驱动未来智能商业的DNA双螺旋:网络协同和数据...

原创小博客
03/26
11
0
卓振物联网策略,助力机房监控与农业物联网的智慧升级

  一、高瞻远瞩,卓振智能的物联网策略有大设想   作为工业级智慧物联网行业的新锐厂商,卓振智能在智慧机房监控、智慧数据中心管理、智慧农业物联网等市场拥有良好影响力。为配合国家的...

大数据头条
2018/01/04
0
0
深度 | 蚂蚁金服金融智能技术:更安全,更智能!

小蚂蚁说: 在今年9月20日蚂蚁金服ATEC科技大会的主论坛上,蚂蚁金服副CTO胡喜宣布,蚂蚁金服的金融科技正式全面开放,为行业提供完整的数字金融解决方案。包括容灾系统在内的多项核心技术和...

平生栗子
2018/11/06
0
0
百分点发布 AI 决策系统,基于“大数据+ AI”的智能决策如何赋能传统金融?

雷锋网消息,近日,百分点集团在北京发布了行业 AI 决策系统 Deep Matrix ,一口气推出了针对五大行业的智能应用决策产品:智能安全分析系统Deep Finder、智能政府决策系统Deep Governor、智...

李雨晨
2017/12/19
0
1
从特斯拉到小鹏汽车,谷俊丽如何为中国智能车再写一遍0到1?| GAIR 硅谷智能驾驶峰会

雷锋网·新智驾按:2018年1月16日,雷锋网新智驾将在旧金山湾区举办GAIR硅谷智能驾驶峰会(更多详情请访问:https://gair.leiphone.com/gair/gairsv2018),届时,来自定级学界、互联网巨头、...

思佳
2017/12/12
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Spring Boot 2 实战:使用 Spring Boot Admin 监控你的应用

1. 前言 生产上对 Web 应用 的监控是十分必要的。我们可以近乎实时来对应用的健康、性能等其他指标进行监控来及时应对一些突发情况。避免一些故障的发生。对于 Spring Boot 应用来说我们可以...

码农小胖哥
15分钟前
2
0
ZetCode 教程翻译计划正式启动 | ApacheCN

原文:ZetCode 协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远。 ApacheCN 学习资源 贡献指南 本项目需要校对,欢迎大家提交 Pull Request。 ...

ApacheCN_飞龙
26分钟前
2
0
CSS定位

CSS定位 relative相对定位 absolute绝对定位 fixed和sticky及zIndex relative相对定位 position特性:css position属性用于指定一个元素在文档中的定位方式。top、right、bottom、left属性则...

studywin
35分钟前
5
0
从零基础到拿到网易Java实习offer,我做对了哪些事

作为一个非科班小白,我在读研期间基本是自学Java,从一开始几乎零基础,只有一点点数据结构和Java方面的基础,到最终获得网易游戏的Java实习offer,我大概用了半年左右的时间。本文将会讲到...

Java技术江湖
昨天
5
0
程序性能checklist

程序性能checklist

Moks角木
昨天
7
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部