文档章节

Google发布新的图像压缩技术,最高可节省75%带宽

席道坤
 席道坤
发布于 2017/02/08 17:43
字数 1444
阅读 34
收藏 0

在社交网络上,每天都有难以计数的图片被人们分享、存储。但有一个现实的问题是,大量的照片由于网络限制被人为压缩降低了画质。

而Apple在2010年的iPhone 4S推出了“视网膜”的概念后,各大手机商也推出了2K的手机,显示器也逐步走向了4K。但是高清显示一直缺乏内容,成了该行业发展的痛点。因为超分辨率技术受成本、硬件限制,未能广为普及。将低分辨率图片转化为高清版本,并可在多种设备上查看和分享,成了市场巨大的需求。

如今,Google为了解决这一痛点,发布了黑科技,让人们看到了希望。

Google发布RAISR技术

不久前,Google刚刚发布了一种名为RAISR(Rapid and Accurate Super Image Resolution,意为“快速、精确的超级图像分辨率技术”)的图像压缩技术,旨在保存宝贵的数据,而不牺牲照片质量;并在带宽受限的移动设备上提供清晰锐利的图像。

Google声称,该技术可以降低高达75%的带宽,RAISR分析同一图像的低分辨率和高分辨率版本,了解到高分辨率版本出众的原因,然后在低分辨率版本模拟出来。实际上就是使用机器学习创建一个类似Instagram的过滤器,欺骗你的眼睛,让你相信低分辨率与高分辨率图像是一致的。

RAISR的现状与未来

登陆Google+

早在2016年11月,Google已经将RAISR技术研发完成,希望可以在带宽有限的移动端上展现高清图片。

上周,即2017年1月中,这项技术已经应用于大多数Google+ 的Android版。Google产品经理John Nack声称,RAISR在Google+上每周处理超过10亿张图片,将这些用户的总带宽节省了约三分之一。

John Nack表示,当使用Android移动设备的用户观看Google+的图片时,Google+会发送一张仅为原图片大小的四分之一的版本,再通过RAISR算法来修复细节。最高时,RAISR可以为用户节省了大约75%的带宽。

iOS端早有集成

早在2016年12月,Google在自家的iOS应用Motion Stills就已经集成了RAISR技术,这其实才是RAISR的首次亮相。彼时,RAISR来改善视频的分辨率,可以自动锐化用户导出的每段视频

不过,目前尚不清楚具体何时会在iOS移动设备上为用户访问Google+时提供RAISR技术。Nack表示,Google将在未来几周内普及到iOS领域上。

下一个应用会是?

如果用户不想仅仅在Google+中使用RAISR,还得等一段时间。Google计划在未来几个月内将RAISR逐步部署到更多的应用,比如Google Photos。

RAISR实现原理:机器学习、无混叠效应

Google的这项黑技术利用了机器学习,它的效果能达到甚至超过现在的超分辨率解决方案,同时速度提升10~100倍,还能够在普通的移动设备上运行。Google还声称,他们的技术能够避免在重建低分辨率图像中产生混叠效应(aliasing artifacts)。

在“填充”图片时,传统的升采样技术是通过周围已有的像素值计算需要添加的新像素值。这些方法速度很快,但它们并不是在放大图像中显示生动的细节的最好方法。如下所示图片,左图是原始图片,右图是经升采样处理后的图片,看起来很模糊,远不能称之为画质提升。

RAISR与它们不同之处在于,它采用了机器学习,用一对低品质和高分辨率图片进行训练的系统,因此它知道如何重建应用于低分辨率图片中的每个像素的过滤器,生成媲美原始图片的细节。RAISR选择最佳方式来增强低分辨率照片中的每个“像素邻域”,以创建更多的分辨率。

换句话说,RAISR使用它从其他照片中学到的东西,以便有根据地猜测每个丢失像素区域中的高分辨率版本应该是什么样子。

Google表示:“当这些过滤器应用于较低分辨率的图像时,它们会重现出相当于原始分辨率的细节,这大幅优于现行、双三(Bicubic)、兰索斯(Lancos)的解析方式。”

上图是原始图片,下图是经RAISR放大后的图片。

左图是原始图片,右图是经RAISR放大后的效果。

以下是RAISR与Bicubic比较的一组示例:

左边为Bicubic处理的图片,右边为RAISR处理的图片。

此外,RAISR可以消除照片中的混叠效应,如莫尔条纹(Moire patterns)和锯齿,恢复照片的原始结构。

如下图,左边是低分辨率的原始图片,3和5都有很明显的莫尔条纹,这就是混叠效应;右图是用RAISR算法恢复的图像。

左图为原始图像,右图为RAISR消除莫尔条纹的图片

Google声称,这种技术在未来,除了放大手机上的图片,还可以在低分辨率和超高清捕捉、存储、传输图像,使用更少的移动网络数据和存储空间,而且不会产生肉眼能观察到的画质降低。

本文转载自:http://www.infoq.com/cn/news/2017/01/Google-RAISR?utm_source=infoq&utm_medium=popular_widget&utm_cam

共有 人打赏支持
席道坤
粉丝 13
博文 228
码字总数 183865
作品 0
徐汇
程序员
私信 提问
【省带宽、压成本专题】带宽成本降低50%的秘密——深入解析WebP

过去几年,又拍云一直在点播、直播等视频应用方面潜心钻研,取得了不俗的成果。我们结合点播、直播、短视频等业务中的用户场景,推出了“省带宽、压成本”系列文章,从编码技术、网络架构等角...

又拍云
06/12
0
0
WebP 的前世今生

除了视频,图片占据了 PC 和 App 的大部分流量,为运营方带来高额的成本支出,同时过多的图片加载会影响到网站与 App 的加载速度。因此在保证图片质量的前提下缩小图片的体积就成了迫在眉睫的...

又拍云
2017/11/08
0
0
Google将开源VP8编解码器

今年2月,自由软件基金会呼吁Google在免专利授权费的许可下发布VP8编解码器。现在有报道称Google的步子迈得更远,它计划开源VP8编解码器。 消息来源称,Google计划在下个月举行的Google I/O开...

红薯
2010/04/13
1K
4
mozjpeg:JPEG图片压缩5%,获Facebook支持

mozjpeg是一个来自Mozilla实验室的JPEG图像编码器项目,目标是在不降低图像质量且兼容主流的解码器的情况下,提供产品级的JPEG格式编码器来提高压缩率以减小JPEG文件的大小。 Mozilla指出,这...

lateron
2014/07/31
5.1K
19
假期不能错过的音视频领域技术进展

本文将带您回顾春节假期不可错过的音视频领域新闻和技术进展。 新的开源编码器XVC,AV1和HEVC之外的另外选项? 原文链接:https://mp.weixin.qq.com/s/rYtiGBCQx6RR85E8VptqCw 视频数据是目前...

LiveVideoStack
02/23
0
0

没有更多内容

加载失败,请刷新页面

加载更多

http协议请求头的意义

GET /day31_Http_306/index.jsp HTTP/1.1: GET请求,请求服务器路径为/hello/index.jsp,协议为1.1 请求头 1.Host:localhost:请求的主机名为localhost2.User-Agent:Mozilla/5.0(Windows NT......

潇潇程序缘
25分钟前
4
0
Netty 简单服务器 (三)

经过对Netty的基础认识,设计模型的初步了解,来写个测试,试试手感 上篇也说到官方推荐我们使用主从线程池模型,那就选择这个模型进行操作 需要操作的步骤: 需要构建两个主从线程组 写一个服务器...

_大侠__
35分钟前
7
0
day02:管道符、shell及环境变量

1、管道符:"|" 用于将前一个指令的输出作为后一个指令的输入,且管道符后面跟的是命令(针对文档的操作):cat less head tail grep cut sort wc uniq tee tr split sed awk等) [root@localho...

芬野de博客
46分钟前
11
0
Kubernetes系列——Kubernetes 组件、对象(二)

一、Kubernetes 组件 介绍了Kubernetes集群所需的各种二进制组件。 Master 组件 Master组件提供集群的管理控制中心。Master组件可以在集群中任何节点上运行。但是为了简单起见,通常在一...

吴伟祥
55分钟前
16
0
Flink-数据流编程模型

1、抽象等级 Flink提供了不同级别的抽象来开发流/批处理应用程序。 1) 低层级的抽象 最低层次的抽象仅仅提供有状态流。它通过Process函数嵌入到DataStream API中。它允许用户自由地处理来自一...

liwei2000
今天
13
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部