文档章节

数据结构与算法07 之哈希表

乐在克里特
 乐在克里特
发布于 2017/02/23 13:52
字数 2553
阅读 6
收藏 0

        哈希表也称为散列表,是根据关键字值(key value)而直接进行访问的数据结构。也就是说,它通过把关键字值映射到一个位置来访问记录,以加快查找的速度。这个映射函数称为哈希函数(也称为散列函数),映射过程称为哈希化,存放记录的数组叫做散列表。比如我们可以用下面的方法将关键字映射成数组的下标:arrayIndex = hugeNumber % arraySize。

        哈希化之后难免会产生一个问题,那就是对不同的关键字,可能得到同一个散列地址,即同一个数组下标,这种现象称为冲突,那么我们该如何去处理冲突呢?一种方法是开放地址法,即通过系统的方法找到数组的另一个空位,把数据填入,而不再用哈希函数得到的数组下标,因为该位置已经有数据了;另一种方法是创建一个存放链表的数组,数组内不直接存储数据,这样当发生冲突时,新的数据项直接接到这个数组下标所指的链表中,这种方法叫做链地址法。下面针对这两种方法进行讨论。

1.开放地址法

线性探测法

        所谓线性探测,即线性地查找空白单元。如果21是要插入数据的位置,但是它已经被占用了,那么就是用22,然后23,以此类推。数组下标一直递增,直到找到空白位。下面是基于线性探测法的哈希表实现代码:

 

  1. public class HashTable {  
  2.     private DataItem[] hashArray; //DateItem类是数据项,封装数据信息  
  3.     private int arraySize;  
  4.     private int itemNum; //数组中目前存储了多少项  
  5.     private DataItem nonItem; //用于删除项的  
  6.     public HashTable() {  
  7.         arraySize = 13;  
  8.         hashArray = new DataItem[arraySize];  
  9.         nonItem = new DataItem(-1); //deleted item key is -1  
  10.     }  
  11.     public boolean isFull() {  
  12.         return (itemNum == arraySize);  
  13.     }  
  14.     public boolean isEmpty() {  
  15.         return (itemNum == 0);  
  16.     }  
  17.     public void displayTable() {  
  18.         System.out.print("Table:");  
  19.         for(int j = 0; j < arraySize; j++) {  
  20.             if(hashArray[j] != null) {  
  21.                 System.out.print(hashArray[j].getKey() + " ");  
  22.             }  
  23.             else {  
  24.                 System.out.print("** ");  
  25.             }  
  26.         }  
  27.         System.out.println("");  
  28.     }  
  29.     public int hashFunction(int key) {  
  30.         return key % arraySize;     //hash function  
  31.     }  
  32.       
  33.     public void insert(DataItem item) {  
  34.         if(isFull()) {            
  35.             //扩展哈希表  
  36.             System.out.println("哈希表已满,重新哈希化..");  
  37.             extendHashTable();  
  38.         }  
  39.         int key = item.getKey();  
  40.         int hashVal = hashFunction(key);  
  41.         while(hashArray[hashVal] != null && hashArray[hashVal].getKey() != -1) {  
  42.             ++hashVal;  
  43.             hashVal %= arraySize;  
  44.         }  
  45.         hashArray[hashVal] = item;  
  46.         itemNum++;  
  47.     }  
  48.     /* 
  49.      * 数组有固定的大小,而且不能扩展,所以扩展哈希表只能另外创建一个更大的数组,然后把旧数组中的数据插到新的数组中。但是哈希表是根据数组大小计算给定数据的位置的,所以这些数据项不能再放在新数组中和老数组相同的位置上,因此不能直接拷贝,需要按顺序遍历老数组,并使用insert方法向新数组中插入每个数据项。这叫重新哈希化。这是一个耗时的过程,但如果数组要进行扩展,这个过程是必须的。 
  50.      */  
  51.     public void extendHashTable() { //扩展哈希表  
  52.         int num = arraySize;  
  53.         itemNum = 0//重新记数,因为下面要把原来的数据转移到新的扩张的数组中  
  54.         arraySize *= 2//数组大小翻倍  
  55.         DataItem[] oldHashArray = hashArray;  
  56.         hashArray = new DataItem[arraySize];  
  57.         for(int i = 0; i < num; i++) {  
  58.             insert(oldHashArray[i]);  
  59.         }  
  60.     }  
  61.     public DataItem delete(int key) {  
  62.         if(isEmpty()) {  
  63.             System.out.println("Hash table is empty!");  
  64.             return null;  
  65.         }  
  66.         int hashVal = hashFunction(key);  
  67.         while(hashArray[hashVal] != null) {  
  68.             if(hashArray[hashVal].getKey() == key) {  
  69.                 DataItem temp = hashArray[hashVal];  
  70.                 hashArray[hashVal] = nonItem; //nonItem表示空Item,其key为-1  
  71.                 itemNum--;  
  72.                 return temp;  
  73.             }  
  74.             ++hashVal;  
  75.             hashVal %= arraySize;  
  76.         }  
  77.         return null;  
  78.     }  
  79.       
  80.     public DataItem find(int key) {  
  81.         int hashVal = hashFunction(key);  
  82.         while(hashArray[hashVal] != null) {  
  83.             if(hashArray[hashVal].getKey() == key) {  
  84.                 return hashArray[hashVal];  
  85.             }  
  86.             ++hashVal;  
  87.             hashVal %= arraySize;  
  88.         }  
  89.         return null;  
  90.     }  
  91. }  
  92. class DataItem {  
  93.     private int iData;  
  94.     public DataItem (int data) {  
  95.         iData = data;  
  96.     }  
  97.     public int getKey() {  
  98.         return iData;  
  99.     }  
  100. }  

        线性探测有个弊端,即数据可能会发生聚集。一旦聚集形成,它会变得越来越大,那些哈希化后落在聚集范围内的数据项,都要一步步的移动,并且插在聚集的最后,因此使聚集变得更大。聚集越大,它增长的也越快。这就导致了哈希表的某个部分包含大量的聚集,而另一部分很稀疏。

        为了解决这个问题,我们可以使用二次探测:二次探测是防止聚集产生的一种方式,思想是探测相隔较远的单元,而不是和原始位置相邻的单元。线性探测中,如果哈希函数计算的原始下标是x, 线性探测就是x+1, x+2, x+3, 以此类推;而在二次探测中,探测的过程是x+1, x+4, x+9, x+16,以此类推,到原始位置的距离是步数的平方。二次探测虽然消除了原始的聚集问题,但是产生了另一种更细的聚集问题,叫二次聚集:比如讲184,302,420和544依次插入表中,它们的映射都是7,那么302需要以1为步长探测,420需要以4为步长探测, 544需要以9为步长探测。只要有一项其关键字映射到7,就需要更长步长的探测,这个现象叫做二次聚集。二次聚集不是一个严重的问题,但是二次探测不会经常使用,因为还有好的解决方法,比如再哈希法。

再哈希法

        为了消除原始聚集和二次聚集,现在需要的一种方法是产生一种依赖关键字的探测序列,而不是每个关键字都一样。即:不同的关键字即使映射到相同的数组下标,也可以使用不同的探测序列。再哈希法就是把关键字用不同的哈希函数再做一遍哈希化,用这个结果作为步长,对于指定的关键字,步长在整个探测中是不变的,不同关键字使用不同的步长、经验说明,第二个哈希函数必须具备如下特点:

        1. 和第一个哈希函数不同;

        2. 不能输出0(否则没有步长,每次探索都是原地踏步,算法将进入死循环)。

        专家们已经发现下面形式的哈希函数工作的非常好:stepSize = constant - key % constant; 其中constant是质数,且小于数组容量。

        再哈希法要求表的容量是一个质数,假如表长度为15(0-14),非质数,有一个特定关键字映射到0,步长为5,则探测序列是0,5,10,0,5,10,以此类推一直循环下去。算法只尝试这三个单元,所以不可能找到某些空白单元,最终算法导致崩溃。如果数组容量为13, 质数,探测序列最终会访问所有单元。即0,5,10,2,7,12,4,9,1,6,11,3,一直下去,只要表中有一个空位,就可以探测到它。下面看看再哈希法的代码:

 

  1. public class HashDouble {  
  2.     private DataItem[] hashArray;  
  3.     private int arraySize;  
  4.     private int itemNum;  
  5.     private DataItem nonItem;  
  6.     public HashDouble() {  
  7.         arraySize = 13;  
  8.         hashArray = new DataItem[arraySize];  
  9.         nonItem = new DataItem(-1);  
  10.     }  
  11.     public void displayTable() {  
  12.         System.out.print("Table:");  
  13.         for(int i = 0; i < arraySize; i++) {  
  14.             if(hashArray[i] != null) {  
  15.                 System.out.print(hashArray[i].getKey() + " ");  
  16.             }  
  17.             else {  
  18.                 System.out.print("** ");  
  19.             }  
  20.         }  
  21.         System.out.println("");  
  22.     }  
  23.     public int hashFunction1(int key) { //first hash function  
  24.         return key % arraySize;  
  25.     }  
  26.       
  27.     public int hashFunction2(int key) { //second hash function  
  28.         return 5 - key % 5;  
  29.     }  
  30.       
  31.     public boolean isFull() {  
  32.         return (itemNum == arraySize);  
  33.     }  
  34.     public boolean isEmpty() {  
  35.         return (itemNum == 0);  
  36.     }  
  37.     public void insert(DataItem item) {  
  38.         if(isFull()) {  
  39.             System.out.println("哈希表已满,重新哈希化..");  
  40.             extendHashTable();  
  41.         }  
  42.         int key = item.getKey();  
  43.         int hashVal = hashFunction1(key);  
  44.         int stepSize = hashFunction2(key); //用hashFunction2计算探测步数  
  45.         while(hashArray[hashVal] != null && hashArray[hashVal].getKey() != -1) {  
  46.             hashVal += stepSize;  
  47.             hashVal %= arraySize; //以指定的步数向后探测  
  48.         }  
  49.         hashArray[hashVal] = item;  
  50.         itemNum++;  
  51.     }  
  52.     public void extendHashTable() {  
  53.         int num = arraySize;  
  54.         itemNum = 0//重新记数,因为下面要把原来的数据转移到新的扩张的数组中  
  55.         arraySize *= 2//数组大小翻倍  
  56.         DataItem[] oldHashArray = hashArray;  
  57.         hashArray = new DataItem[arraySize];  
  58.         for(int i = 0; i < num; i++) {  
  59.             insert(oldHashArray[i]);  
  60.         }  
  61.     }  
  62.     public DataItem delete(int key) {  
  63.         if(isEmpty()) {  
  64.             System.out.println("Hash table is empty!");  
  65.             return null;  
  66.         }  
  67.         int hashVal = hashFunction1(key);  
  68.         int stepSize = hashFunction2(key);  
  69.         while(hashArray[hashVal] != null) {  
  70.             if(hashArray[hashVal].getKey() == key) {  
  71.                 DataItem temp = hashArray[hashVal];  
  72.                 hashArray[hashVal] = nonItem;  
  73.                 itemNum--;  
  74.                 return temp;  
  75.             }  
  76. hashVal += stepSize;  
  77.             hashVal %= arraySize;  
  78.         }  
  79.         return null;  
  80.     }  
  81.     public DataItem find(int key) {  
  82.         int hashVal = hashFunction1(key);  
  83.         int stepSize = hashFunction2(key);  
  84.         while(hashArray[hashVal] != null) {  
  85.             if(hashArray[hashVal].getKey() == key) {  
  86.                 return hashArray[hashVal];  
  87.             }  
  88.             hashVal += stepSize;  
  89.             hashVal %= arraySize;  
  90.         }  
  91.         return null;  
  92.     }  
  93. }  

2.链地址法

        在开放地址法中,通过再哈希法寻找一个空位解决冲突问题,另一个方法是在哈希表每个单元中设置链表(即链地址法),某个数据项的关键字值还是像通常一样映射到哈希表的单元,而数据项本身插入到这个单元的链表中。其他同样映射到这个位置的数据项只需要加到链表中,不需要在原始的数组中寻找空位。下面看看链地址法的代码:

 

  1. public class HashChain {  
  2.     private SortedList[] hashArray; //数组中存放链表  
  3.     private int arraySize;  
  4.     public HashChain(int size) {  
  5.         arraySize = size;  
  6.         hashArray = new SortedList[arraySize];  
  7.         //new出每个空链表初始化数组  
  8.         for(int i = 0; i < arraySize; i++) {  
  9.             hashArray[i] = new SortedList();  
  10.         }  
  11.     }  
  12.     public void displayTable() {  
  13.         for(int i = 0; i < arraySize; i++) {  
  14.             System.out.print(i + ": ");  
  15.             hashArray[i].displayList();  
  16.         }  
  17.     }  
  18.     public int hashFunction(int key) {  
  19.         return key % arraySize;  
  20.     }  
  21.     public void insert(LinkNode node) {  
  22.         int key = node.getKey();  
  23.         int hashVal = hashFunction(key);  
  24.         hashArray[hashVal].insert(node); //直接往链表中添加即可  
  25.     }  
  26.     public LinkNode delete(int key) {  
  27.         int hashVal = hashFunction(key);  
  28.         LinkNode temp = find(key);  
  29.         hashArray[hashVal].delete(key);//从链表中找到要删除的数据项,直接删除  
  30.         return temp;  
  31.     }  
  32.       
  33.     public LinkNode find(int key) {  
  34.         int hashVal = hashFunction(key);  
  35.         LinkNode node = hashArray[hashVal].find(key);  
  36.         return node;  
  37.     }  
  38. }  

    下面是链表类的代码,用的是有序链表:

 

  1. public class SortedList {  
  2.     private LinkNode first;  
  3.     public SortedList() {  
  4.         first = null;  
  5.     }  
  6.     public boolean isEmpty() {  
  7.         return (first == null);  
  8.     }  
  9.     public void insert(LinkNode node) {  
  10.         int key = node.getKey();  
  11.         LinkNode previous = null;  
  12.         LinkNode current = first;  
  13.         while(current != null && current.getKey() < key) {  
  14.             previous = current;  
  15.             current = current.next;  
  16.         }  
  17.         if(previous == null) {  
  18.             first = node;  
  19.         }  
  20.         else {  
  21.             node.next = current;  
  22.             previous.next = node;  
  23.         }  
  24.     }  
  25.     public void delete(int key) {  
  26.         LinkNode previous = null;  
  27.         LinkNode current = first;  
  28.         if(isEmpty()) {  
  29.             System.out.println("chain is empty!");  
  30.             return;  
  31.         }  
  32.         while(current != null && current.getKey() != key) {  
  33.             previous = current;  
  34.             current = current.next;  
  35.         }  
  36.         if(previous == null) {  
  37.             first = first.next;  
  38.         }  
  39.         else {  
  40.             previous.next = current.next;  
  41.         }  
  42.     }  
  43.     public LinkNode find(int key) {  
  44.         LinkNode current = first;  
  45.         while(current != null && current.getKey() <= key) {  
  46.             if(current.getKey() == key) {  
  47.                 return current;  
  48.             }  
  49.             current = current.next;  
  50.         }  
  51.         return null;  
  52.     }  
  53.     public void displayList() {  
  54.         System.out.print("List(First->Last):");  
  55.         LinkNode current = first;  
  56.         while(current != null) {  
  57.             current.displayLink();  
  58.             current = current.next;  
  59.         }  
  60.         System.out.println("");  
  61.     }  
  62. }  
  63. class LinkNode {  
  64.     private int iData;  
  65.     public LinkNode next;  
  66.     public LinkNode(int data) {  
  67.         iData = data;  
  68.     }  
  69.     public int getKey() {  
  70.         return iData;  
  71.     }  
  72.     public void displayLink() {  
  73.         System.out.print(iData + " ");  
  74.     }  
  75. }  

        在没有冲突的情况下,哈希表中执行插入和删除操作可以达到O(1)的时间级,这是相当快的,如果发生冲突了,存取时间就依赖后来的长度,查找或删除时也得挨个判断,但是最差也就O(N)级别。

 

http://blog.csdn.net/eson_15/article/details/51138588

© 著作权归作者所有

共有 人打赏支持
乐在克里特
粉丝 15
博文 268
码字总数 394729
作品 0
杭州
程序员
PHP哈希表碰撞攻击原理

最近哈希表碰撞攻击(Hashtable collisions as DOS attack)的话题不断被提起,各种语言纷纷中招。本文结合PHP内核源码,聊一聊这种攻击的原理及实现。 哈希表碰撞攻击的基本原理 哈希表是一...

modernizr
2014/07/01
528
5
PHP哈希表碰撞攻击原理

文章出处:http://www.codinglabs.org/html/hash-collisions-attack-on-php.html 最近哈希表碰撞攻击(Hashtable collisions as DOS attack)的话题不断被提起,各种语言纷纷中招。本文结合P...

鉴客
2012/04/17
1K
0
[译] PHP7 数组:HashTable

http://joshuais.me/yi-php7-shu-zu-hashtable/?utmsource=tuicool&utm_medium=referral [译] PHP7 数组:HashTable November 17, 2016 简介 几乎每个C程序中都会使用到哈希表。鉴于C语言只允......

污湖洞主
2017/06/12
0
0
分布式一致性哈希环

哈希表的原理与实现 一列键值对数据,存储在一个table中,如何通过数据的关键字快速查找相应值呢?不要告诉我一个个拿出来比较key啊,呵呵。 大家都知道,在所有的线性数据结构中,数组的定位...

tantexian
2016/04/07
125
0
C 扩展类库--celib

celib 是使用ANSI C开发的一个扩展类库(c extend library),包含了一些常用的数据结构和算法的封装,可以应用到项目或者用于学习。 目前已经包含的封装如下: (01). 动态数组。 (02). bitmap...

狮子的魂
2014/01/03
1K
0

没有更多内容

加载失败,请刷新页面

加载更多

Java中的移位运算符

国庆给自己放了个小长期二十几天,回来继续更新专栏 上一篇文章我们说了Java里的二进制,知道了计算机是以0和1来处理数据的,在阅读源码的过程中,经常会看到这些符号<< ,>>,>>>,这些符号...

SuShine
28分钟前
2
0
linux版QQ

下载地址在这 http://yun.tzmm.com.cn/index.php/s/XRbfi6aOIjv5gwj Appimage包不用做什么别的处理,安装啥的都不需要。。找到文件所在目录,终端中修改一下文件的权限 chmod 777 QQ-2017112...

悲催的古灵武士
34分钟前
1
0
咕泡-MyBatis 实用篇作业

1. Mapper在spring管理下其实是单例,为什么可以是一个单例? 首先,mapper 内部不包含 成员字段,无状态单例是安全的 另外,一直存在不用每次调用都new 一个新实例 2. MyBatis在Spring集成下...

职业搬砖20年
37分钟前
2
0
MQTT协议的初浅认识之连接建立

MQTT百科 MQTT(消息队列遥测传输)是ISO 标准(ISO/IEC PRF 20922)下基于发布/订阅范式的消息协议。它工作在 TCP/IP协议族上,是为硬件性能低下的远程设备以及网络状况糟糕的情况下而设计的发布...

亚林瓜子
53分钟前
1
0
OpenStack部署都有哪些方式

对于每一个刚接触到OpenStack的新人而言,安装无疑是最困难的,同时这也客观上提高了大家学习OpenStack云计算的技术门槛。想一想,自己3年前网上偶然接触到OpenStack时,一头茫然,手动搭建一...

tututu_jiang
54分钟前
0
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部