文档章节

Hadoop MapReduce执行过程详解(带hadoop例子)

摆渡者
 摆渡者
发布于 2014/06/06 18:38
字数 3557
阅读 29401
收藏 33

分析MapReduce执行过程

    MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出。Reducer任务会接收Mapper任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到HDFS的文件中。整个流程如图:

image

Mapper任务的执行过程详解

每个Mapper任务是一个java进程,它会读取HDFS中的文件,解析成很多的键值对,经过我们覆盖的map方法处理后,转换为很多的键值对再输出。整个Mapper任务的处理过程又可以分为以下几个阶段,如图所示。

image

在上图中,把Mapper任务的运行过程分为六个阶段。

  1. 第一阶段是把输入文件按照一定的标准分片(InputSplit),每个输入片的大小是固定的。默认情况下,输入片(InputSplit)的大小与数据块(Block)的大小是相同的。如果数据块(Block)的大小是默认值64MB,输入文件有两个,一个是32MB,一个是72MB。那么小的文件是一个输入片,大文件会分为两个数据块,那么是两个输入片。一共产生三个输入片。每一个输入片由一个Mapper进程处理。这里的三个输入片,会有三个Mapper进程处理。

  2. 第二阶段是对输入片中的记录按照一定的规则解析成键值对。有个默认规则是把每一行文本内容解析成键值对。“键”是每一行的起始位置(单位是字节),“值”是本行的文本内容。

  3. 第三阶段是调用Mapper类中的map方法。第二阶段中解析出来的每一个键值对,调用一次map方法。如果有1000个键值对,就会调用1000次map方法。每一次调用map方法会输出零个或者多个键值对。

  4. 第四阶段是按照一定的规则对第三阶段输出的键值对进行分区。比较是基于键进行的。比如我们的键表示省份(如北京、上海、山东等),那么就可以按照不同省份进行分区,同一个省份的键值对划分到一个区中。默认是只有一个区分区的数量就是Reducer任务运行的数量。默认只有一个Reducer任务。

  5. 第五阶段是对每个分区中的键值对进行排序。首先,按照键进行排序,对于键相同的键值对,按照值进行排序。比如三个键值对<2,2>、<1,3>、<2,1>,键和值分别是整数。那么排序后的结果是<1,3>、<2,1>、<2,2>。如果有第六阶段,那么进入第六阶段;如果没有,直接输出到本地的linux文件中。

  6. 第六阶段是对数据进行归约处理,也就是reduce处理。键相等的键值对会调用一次reduce方法。经过这一阶段,数据量会减少。归约后的数据输出到本地的linxu文件中。本阶段默认是没有的,需要用户自己增加这一阶段的代码

Reducer任务的执行过程详解

每个Reducer任务是一个java进程。Reducer任务接收Mapper任务的输出,归约处理后写入到HDFS中,可以分为如下图所示的几个阶段。

image

  1. 第一阶段是Reducer任务会主动从Mapper任务复制其输出的键值对。Mapper任务可能会有很多,因此Reducer会复制多个Mapper的输出。

  2. 第二阶段是把复制到Reducer本地数据,全部进行合并,即把分散的数据合并成一个大的数据。再对合并后的数据排序。

  3. 第三阶段是对排序后的键值对调用reduce方法。键相等的键值对调用一次reduce方法,每次调用会产生零个或者多个键值对。最后把这些输出的键值对写入到HDFS文件中。

在整个MapReduce程序的开发过程中,我们最大的工作量是覆盖map函数和覆盖reduce函数。

键值对的编号

在对Mapper任务、Reducer任务的分析过程中,会看到很多阶段都出现了键值对,读者容易混淆,所以这里对键值对进行编号,方便大家理解键值对的变化情况,如下图所示。

image

在上图中,对于Mapper任务输入的键值对,定义为key1和value1。在map方法中处理后,输出的键值对,定义为key2和value2。reduce方法接收key2和value2,处理后,输出key3和value3。在下文讨论键值对时,可能把key1和value1简写为<k1,v1>,key2和value2简写为<k2,v2>,key3和value3简写为<k3,v3>。

以上内容来自:http://www.superwu.cn/2013/08/21/530/


-----------------------分------------------割----------------线-------------------------


例子:求每年最高气温

在HDFS中的根目录下有以下文件格式: /input.txt

2014010114
2014010216
2014010317
2014010410
2014010506
2012010609
2012010732
2012010812
2012010919
2012011023
2001010116
2001010212
2001010310
2001010411
2001010529
2013010619
2013010722
2013010812
2013010929
2013011023
2008010105
2008010216
2008010337
2008010414
2008010516
2007010619
2007010712
2007010812
2007010999
2007011023
2010010114
2010010216
2010010317
2010010410
2010010506
2015010649
2015010722
2015010812
2015010999
2015011023

    比如:2010012325表示在2010年01月23日的气温为25度。现在要求使用MapReduce,计算每一年出现过的最大气温。

    在写代码之前,先确保正确的导入了相关的jar包。我使用的是maven,可以到http://mvnrepository.com去搜索这几个artifactId。

    此程序需要以Hadoop文件作为输入文件,以Hadoop文件作为输出文件,因此需要用到文件系统,于是需要引入hadoop-hdfs包;我们需要向Map-Reduce集群提交任务,需要用到Map-Reduce的客户端,于是需要导入hadoop-mapreduce-client-jobclient包;另外,在处理数据的时候会用到一些hadoop的数据类型例如IntWritable和Text等,因此需要导入hadoop-common包。于是运行此程序所需要的相关依赖有以下几个:

<dependency>
	<groupId>org.apache.hadoop</groupId>
	<artifactId>hadoop-hdfs</artifactId>
	<version>2.4.0</version>
</dependency>
<dependency>
	<groupId>org.apache.hadoop</groupId>
	<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
	<version>2.4.0</version>
</dependency>
<dependency>
	<groupId>org.apache.hadoop</groupId>
	<artifactId>hadoop-common</artifactId>
	<version>2.4.0</version>
</dependency>

    包导好了后, 设计代码如下:

package com.abc.yarn;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class Temperature {
    /**
     * 四个泛型类型分别代表:
     * KeyIn        Mapper的输入数据的Key,这里是每行文字的起始位置(0,11,...)
     * ValueIn      Mapper的输入数据的Value,这里是每行文字
     * KeyOut       Mapper的输出数据的Key,这里是每行文字中的“年份”
     * ValueOut     Mapper的输出数据的Value,这里是每行文字中的“气温”
     */
    static class TempMapper extends
            Mapper<LongWritable, Text, Text, IntWritable> {
        @Override
        public void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            // 打印样本: Before Mapper: 0, 2000010115
            System.out.print("Before Mapper: " + key + ", " + value);
            String line = value.toString();
            String year = line.substring(0, 4);
            int temperature = Integer.parseInt(line.substring(8));
            context.write(new Text(year), new IntWritable(temperature));
            // 打印样本: After Mapper:2000, 15
            System.out.println(
                    "======" +
                    "After Mapper:" + new Text(year) + ", " + new IntWritable(temperature));
        }
    }

    /**
     * 四个泛型类型分别代表:
     * KeyIn        Reducer的输入数据的Key,这里是每行文字中的“年份”
     * ValueIn      Reducer的输入数据的Value,这里是每行文字中的“气温”
     * KeyOut       Reducer的输出数据的Key,这里是不重复的“年份”
     * ValueOut     Reducer的输出数据的Value,这里是这一年中的“最高气温”
     */
    static class TempReducer extends
            Reducer<Text, IntWritable, Text, IntWritable> {
        @Override
        public void reduce(Text key, Iterable<IntWritable> values,
                Context context) throws IOException, InterruptedException {
            int maxValue = Integer.MIN_VALUE;
            StringBuffer sb = new StringBuffer();
            //取values的最大值
            for (IntWritable value : values) {
                maxValue = Math.max(maxValue, value.get());
                sb.append(value).append(", ");
            }
            // 打印样本: Before Reduce: 2000, 15, 23, 99, 12, 22, 
            System.out.print("Before Reduce: " + key + ", " + sb.toString());
            context.write(key, new IntWritable(maxValue));
            // 打印样本: After Reduce: 2000, 99
            System.out.println(
                    "======" +
                    "After Reduce: " + key + ", " + maxValue);
        }
    }

    public static void main(String[] args) throws Exception {
        //输入路径
        String dst = "hdfs://localhost:9000/intput.txt";
        //输出路径,必须是不存在的,空文件加也不行。
        String dstOut = "hdfs://localhost:9000/output";
        Configuration hadoopConfig = new Configuration();
        
        hadoopConfig.set("fs.hdfs.impl", 
            org.apache.hadoop.hdfs.DistributedFileSystem.class.getName()
        );
        hadoopConfig.set("fs.file.impl",
            org.apache.hadoop.fs.LocalFileSystem.class.getName()
        );
        Job job = new Job(hadoopConfig);
        
        //如果需要打成jar运行,需要下面这句
        //job.setJarByClass(NewMaxTemperature.class);

        //job执行作业时输入和输出文件的路径
        FileInputFormat.addInputPath(job, new Path(dst));
        FileOutputFormat.setOutputPath(job, new Path(dstOut));

        //指定自定义的Mapper和Reducer作为两个阶段的任务处理类
        job.setMapperClass(TempMapper.class);
        job.setReducerClass(TempReducer.class);
        
        //设置最后输出结果的Key和Value的类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        
        //执行job,直到完成
        job.waitForCompletion(true);
        System.out.println("Finished");
    }
}

上面代码中,注意Mapper类的泛型不是java的基本类型,而是Hadoop的数据类型Text、IntWritable。我们可以简单的等价为java的类String、int。

代码中Mapper类的泛型依次是<k1,v1,k2,v2>。map方法的第二个形参是行文本内容,是我们关心的。核心代码是把行文本内容按照空格拆分,把每行数据中“年”和“气温”提取出来,其中“年”作为新的键,“温度”作为新的值,写入到上下文context中。在这里,因为每一年有多行数据,因此每一行都会输出一个<年份, 气温>键值对。

下面是控制台打印结果:

Before Mapper: 0, 2014010114======After Mapper:2014, 14
Before Mapper: 11, 2014010216======After Mapper:2014, 16
Before Mapper: 22, 2014010317======After Mapper:2014, 17
Before Mapper: 33, 2014010410======After Mapper:2014, 10
Before Mapper: 44, 2014010506======After Mapper:2014, 6
Before Mapper: 55, 2012010609======After Mapper:2012, 9
Before Mapper: 66, 2012010732======After Mapper:2012, 32
Before Mapper: 77, 2012010812======After Mapper:2012, 12
Before Mapper: 88, 2012010919======After Mapper:2012, 19
Before Mapper: 99, 2012011023======After Mapper:2012, 23
Before Mapper: 110, 2001010116======After Mapper:2001, 16
Before Mapper: 121, 2001010212======After Mapper:2001, 12
Before Mapper: 132, 2001010310======After Mapper:2001, 10
Before Mapper: 143, 2001010411======After Mapper:2001, 11
Before Mapper: 154, 2001010529======After Mapper:2001, 29
Before Mapper: 165, 2013010619======After Mapper:2013, 19
Before Mapper: 176, 2013010722======After Mapper:2013, 22
Before Mapper: 187, 2013010812======After Mapper:2013, 12
Before Mapper: 198, 2013010929======After Mapper:2013, 29
Before Mapper: 209, 2013011023======After Mapper:2013, 23
Before Mapper: 220, 2008010105======After Mapper:2008, 5
Before Mapper: 231, 2008010216======After Mapper:2008, 16
Before Mapper: 242, 2008010337======After Mapper:2008, 37
Before Mapper: 253, 2008010414======After Mapper:2008, 14
Before Mapper: 264, 2008010516======After Mapper:2008, 16
Before Mapper: 275, 2007010619======After Mapper:2007, 19
Before Mapper: 286, 2007010712======After Mapper:2007, 12
Before Mapper: 297, 2007010812======After Mapper:2007, 12
Before Mapper: 308, 2007010999======After Mapper:2007, 99
Before Mapper: 319, 2007011023======After Mapper:2007, 23
Before Mapper: 330, 2010010114======After Mapper:2010, 14
Before Mapper: 341, 2010010216======After Mapper:2010, 16
Before Mapper: 352, 2010010317======After Mapper:2010, 17
Before Mapper: 363, 2010010410======After Mapper:2010, 10
Before Mapper: 374, 2010010506======After Mapper:2010, 6
Before Mapper: 385, 2015010649======After Mapper:2015, 49
Before Mapper: 396, 2015010722======After Mapper:2015, 22
Before Mapper: 407, 2015010812======After Mapper:2015, 12
Before Mapper: 418, 2015010999======After Mapper:2015, 99
Before Mapper: 429, 2015011023======After Mapper:2015, 23
Before Reduce: 2001, 12, 10, 11, 29, 16, ======After Reduce: 2001, 29
Before Reduce: 2007, 23, 19, 12, 12, 99, ======After Reduce: 2007, 99
Before Reduce: 2008, 16, 14, 37, 16, 5, ======After Reduce: 2008, 37
Before Reduce: 2010, 10, 6, 14, 16, 17, ======After Reduce: 2010, 17
Before Reduce: 2012, 19, 12, 32, 9, 23, ======After Reduce: 2012, 32
Before Reduce: 2013, 23, 29, 12, 22, 19, ======After Reduce: 2013, 29
Before Reduce: 2014, 14, 6, 10, 17, 16, ======After Reduce: 2014, 17
Before Reduce: 2015, 23, 49, 22, 12, 99, ======After Reduce: 2015, 99
Finished

    执行结果:

对分析的验证

    从打印的日志中可以看出:

  • Mapper的输入数据(k1,v1)格式是:默认的按行分的键值对<0, 2010012325>,<11, 2012010123>...

  • Reducer的输入数据格式是:把相同的键合并后的键值对:<2001, [12, 32, 25...]>,<2007, [20, 34, 30...]>...

  • Reducer的输出数(k3,v3)据格式是:经自己在Reducer中写出的格式:<2001, 32>,<2007, 34>...

    其中,由于输入数据太小,Map过程的第1阶段这里不能证明。但事实上是这样的。

    结论中第一点验证了Map过程的第2阶段“键”是每一行的起始位置(单位是字节),“值”是本行的文本内容。

    另外,通过Reduce的几行

Before Reduce: 2001, 12, 10, 11, 29, 16, ======After Reduce: 2001, 29
Before Reduce: 2007, 23, 19, 12, 12, 99, ======After Reduce: 2007, 99
Before Reduce: 2008, 16, 14, 37, 16, 5, ======After Reduce: 2008, 37
Before Reduce: 2010, 10, 6, 14, 16, 17, ======After Reduce: 2010, 17
Before Reduce: 2012, 19, 12, 32, 9, 23, ======After Reduce: 2012, 32
Before Reduce: 2013, 23, 29, 12, 22, 19, ======After Reduce: 2013, 29
Before Reduce: 2014, 14, 6, 10, 17, 16, ======After Reduce: 2014, 17
Before Reduce: 2015, 23, 49, 22, 12, 99, ======After Reduce: 2015, 99

    可以证实Map过程的第4阶段:先分区,然后对每个分区都执行一次Reduce(Map过程第6阶段)。

    对于Mapper的输出,前文中提到:如果没有Reduce过程,Mapper的输出会直接写入文件。于是我们把Reduce方法去掉(注释掉第95行即可)。

    再执行,下面是控制台打印结果: 

Before Mapper: 0, 2014010114======After Mapper:2014, 14
Before Mapper: 11, 2014010216======After Mapper:2014, 16
Before Mapper: 22, 2014010317======After Mapper:2014, 17
Before Mapper: 33, 2014010410======After Mapper:2014, 10
Before Mapper: 44, 2014010506======After Mapper:2014, 6
Before Mapper: 55, 2012010609======After Mapper:2012, 9
Before Mapper: 66, 2012010732======After Mapper:2012, 32
Before Mapper: 77, 2012010812======After Mapper:2012, 12
Before Mapper: 88, 2012010919======After Mapper:2012, 19
Before Mapper: 99, 2012011023======After Mapper:2012, 23
Before Mapper: 110, 2001010116======After Mapper:2001, 16
Before Mapper: 121, 2001010212======After Mapper:2001, 12
Before Mapper: 132, 2001010310======After Mapper:2001, 10
Before Mapper: 143, 2001010411======After Mapper:2001, 11
Before Mapper: 154, 2001010529======After Mapper:2001, 29
Before Mapper: 165, 2013010619======After Mapper:2013, 19
Before Mapper: 176, 2013010722======After Mapper:2013, 22
Before Mapper: 187, 2013010812======After Mapper:2013, 12
Before Mapper: 198, 2013010929======After Mapper:2013, 29
Before Mapper: 209, 2013011023======After Mapper:2013, 23
Before Mapper: 220, 2008010105======After Mapper:2008, 5
Before Mapper: 231, 2008010216======After Mapper:2008, 16
Before Mapper: 242, 2008010337======After Mapper:2008, 37
Before Mapper: 253, 2008010414======After Mapper:2008, 14
Before Mapper: 264, 2008010516======After Mapper:2008, 16
Before Mapper: 275, 2007010619======After Mapper:2007, 19
Before Mapper: 286, 2007010712======After Mapper:2007, 12
Before Mapper: 297, 2007010812======After Mapper:2007, 12
Before Mapper: 308, 2007010999======After Mapper:2007, 99
Before Mapper: 319, 2007011023======After Mapper:2007, 23
Before Mapper: 330, 2010010114======After Mapper:2010, 14
Before Mapper: 341, 2010010216======After Mapper:2010, 16
Before Mapper: 352, 2010010317======After Mapper:2010, 17
Before Mapper: 363, 2010010410======After Mapper:2010, 10
Before Mapper: 374, 2010010506======After Mapper:2010, 6
Before Mapper: 385, 2015010649======After Mapper:2015, 49
Before Mapper: 396, 2015010722======After Mapper:2015, 22
Before Mapper: 407, 2015010812======After Mapper:2015, 12
Before Mapper: 418, 2015010999======After Mapper:2015, 99
Before Mapper: 429, 2015011023======After Mapper:2015, 23
Finished

    再来看看执行结果:

    结果还有很多行,没有截图了。

    由于没有执行Reduce操作,因此这个就是Mapper输出的中间文件的内容了。

    从打印的日志可以看出:

  • Mapper的输出数据(k2, v2)格式是:经自己在Mapper中写出的格式:<2010, 25>,<2012, 23>...

    从这个结果中可以看出,原数据文件中的每一行确实都有一行输出,那么Map过程的第3阶段就证实了。

    从这个结果中还可以看出,“年份”已经不是输入给Mapper的顺序了,这也说明了在Map过程中也按照Key执行了排序操作,即Map过程的第5阶段


© 著作权归作者所有

共有 人打赏支持
摆渡者
粉丝 333
博文 171
码字总数 205876
作品 0
浦东
程序员
私信 提问
加载中

评论(1)

Mr___Gao
Mr___Gao
👍
写的真好,感谢
大数据经典学习路线(及供参考)之 一

1.Linux基础和分布式集群技术 学完此阶段可掌握的核心能力: 熟练使用Linux,熟练安装Linux上的软件,了解熟悉负载均衡、高可靠等集群相关概念,搭建互联网高并发、高可靠的服务架构; 学完此...

柯西带你学编程
05/22
0
0
Hadoop2.X的安装与配置(二)本地模式

在上一篇文章中,我们介绍了Hadoop2.X安装与配置前的准备阶段。 在本地模式配置前,首先完成准备阶段。 点击如下链接,进入准备阶段的配置 https://blog.csdn.net/weixin38187469/article/d...

weixin_38187469
04/16
0
0
如何分布式运行mapreduce程序

如何分布式运行mapreduce程序 一、 首先要知道此前提 若在windows的Eclipse工程中直接启动mapreduc程序,需要先把hadoop集群的配置目录下的xml都拷贝到src目录下,让程序自动读取集群的地址后...

Zero零_度
2015/09/06
0
0
Hadoop编写调试MapReduce程序详解

编程学习,最好的方法还是自己动手,所以这里简单介绍在Hadoop上编写调试一个MapReduce程序。 先说一下我的开发环境,我的操作系统是Centos6.0,Hadoop版本是0.20.2,开发环境是eclipse。在H...

miaosu
2013/03/20
0
3
一文详解大规模数据计算处理原理及操作重点

作者介绍 李智慧,《大型网站技术架构:核心原理与案例分析》作者。曾供职于阿里巴巴与英特尔亚太研发中心,从事大型网站与大数据方面的研发工作,目前在做企业级区块链方面的开发工作。 大数...

DBAplus社群
08/07
0
0

没有更多内容

加载失败,请刷新页面

加载更多

CockroachDB

百度云上的CockroachDB 云数据库 帮助文档 > 产品文档 > CockroachDB 云数据库 > 产品描述 开源NewSQL – CockroachDB在百度内部的应用与实践 嘉宾演讲视频及PPT回顾:http://suo.im/5bnORh ...

miaojiangmin
23分钟前
0
0
I2C EEPROM驱动实例分析

上篇分析了Linux Kernel中的I2C驱动框架,本篇举一个具体的I2C设备驱动(eeprom)来对I2C设备驱动有个实际的认识。 s3c24xx系列集成了一个基于I2C的eeprom设备at24cxx系列。at24cxx系列芯片包...

yepanl
25分钟前
1
0
spring mvc拦截器,实现统计http请求的后台运行时间

使用两种方式,实现拦截http请求的后台运行时间。 废话不多说直接上代码 /** * Http请求时间统计 * 拦截所有请求 */public class HttpRquestTimeInterceptor extends HandlerIntercepto...

兜兜毛毛
42分钟前
2
0
设计模式之工厂模式

本篇博文主要翻译这篇文章: https://www.journaldev.com/1392/factory-design-pattern-in-java 由于翻译水平有限,自认为许多地方翻译不恰当,欢迎各位给出宝贵的建议,建议大家去阅读原文。...

firepation
58分钟前
4
0

中国龙-扬科
今天
2
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部