文档章节

kaldi log

MtrS
 MtrS
发布于 2017/03/20 18:26
字数 6055
阅读 397
收藏 0
/opt/pkg/kaldi/egs/thchs30/s5
root@lambda-Precision-3510:/opt/pkg/kaldi/egs/thchs30/s5# sh run.sh 
creating data/{train,dev,test}
cleaning data/train
preparing scps and text in data/train
cleaning data/dev
preparing scps and text in data/dev
cleaning data/test
preparing scps and text in data/test
creating test_phone for phone decoding
steps/make_mfcc.sh --nj 8 --cmd run.pl data/mfcc/train exp/make_mfcc/train mfcc/train
utils/validate_data_dir.sh: Successfully validated data-directory data/mfcc/train
steps/make_mfcc.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance.
Succeeded creating MFCC features for train
steps/compute_cmvn_stats.sh data/mfcc/train exp/mfcc_cmvn/train mfcc/train
Succeeded creating CMVN stats for train
steps/make_mfcc.sh --nj 8 --cmd run.pl data/mfcc/dev exp/make_mfcc/dev mfcc/dev
utils/validate_data_dir.sh: Successfully validated data-directory data/mfcc/dev
steps/make_mfcc.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance.
Succeeded creating MFCC features for dev
steps/compute_cmvn_stats.sh data/mfcc/dev exp/mfcc_cmvn/dev mfcc/dev
Succeeded creating CMVN stats for dev
steps/make_mfcc.sh --nj 8 --cmd run.pl data/mfcc/test exp/make_mfcc/test mfcc/test
utils/validate_data_dir.sh: Successfully validated data-directory data/mfcc/test
steps/make_mfcc.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance.
Succeeded creating MFCC features for test
steps/compute_cmvn_stats.sh data/mfcc/test exp/mfcc_cmvn/test mfcc/test
Succeeded creating CMVN stats for test
make word graph ...
utils/prepare_lang.sh --position_dependent_phones false data/dict <SPOKEN_NOISE> data/local/lang data/lang
Checking data/dict/silence_phones.txt ...
--> reading data/dict/silence_phones.txt
--> data/dict/silence_phones.txt is OK

Checking data/dict/optional_silence.txt ...
--> reading data/dict/optional_silence.txt
--> data/dict/optional_silence.txt is OK

Checking data/dict/nonsilence_phones.txt ...
--> reading data/dict/nonsilence_phones.txt
--> data/dict/nonsilence_phones.txt is OK

Checking disjoint: silence_phones.txt, nonsilence_phones.txt
--> disjoint property is OK.

Checking data/dict/lexicon.txt
--> reading data/dict/lexicon.txt
--> data/dict/lexicon.txt is OK

Checking data/dict/extra_questions.txt ...
--> reading data/dict/extra_questions.txt
--> data/dict/extra_questions.txt is OK
--> SUCCESS [validating dictionary directory data/dict]

**Creating data/dict/lexiconp.txt from data/dict/lexicon.txt
fstaddselfloops data/lang/phones/wdisambig_phones.int data/lang/phones/wdisambig_words.int 
prepare_lang.sh: validating output directory
utils/validate_lang.pl data/lang
Checking data/lang/phones.txt ...
--> data/lang/phones.txt is OK

Checking words.txt: #0 ...
--> data/lang/words.txt is OK

Checking disjoint: silence.txt, nonsilence.txt, disambig.txt ...
--> silence.txt and nonsilence.txt are disjoint
--> silence.txt and disambig.txt are disjoint
--> disambig.txt and nonsilence.txt are disjoint
--> disjoint property is OK

Checking sumation: silence.txt, nonsilence.txt, disambig.txt ...
--> summation property is OK

Checking data/lang/phones/context_indep.{txt, int, csl} ...
--> 1 entry/entries in data/lang/phones/context_indep.txt
--> data/lang/phones/context_indep.int corresponds to data/lang/phones/context_indep.txt
--> data/lang/phones/context_indep.csl corresponds to data/lang/phones/context_indep.txt
--> data/lang/phones/context_indep.{txt, int, csl} are OK

Checking data/lang/phones/nonsilence.{txt, int, csl} ...
--> 217 entry/entries in data/lang/phones/nonsilence.txt
--> data/lang/phones/nonsilence.int corresponds to data/lang/phones/nonsilence.txt
--> data/lang/phones/nonsilence.csl corresponds to data/lang/phones/nonsilence.txt
--> data/lang/phones/nonsilence.{txt, int, csl} are OK

Checking data/lang/phones/silence.{txt, int, csl} ...
--> 1 entry/entries in data/lang/phones/silence.txt
--> data/lang/phones/silence.int corresponds to data/lang/phones/silence.txt
--> data/lang/phones/silence.csl corresponds to data/lang/phones/silence.txt
--> data/lang/phones/silence.{txt, int, csl} are OK

Checking data/lang/phones/optional_silence.{txt, int, csl} ...
--> 1 entry/entries in data/lang/phones/optional_silence.txt
--> data/lang/phones/optional_silence.int corresponds to data/lang/phones/optional_silence.txt
--> data/lang/phones/optional_silence.csl corresponds to data/lang/phones/optional_silence.txt
--> data/lang/phones/optional_silence.{txt, int, csl} are OK

Checking data/lang/phones/disambig.{txt, int, csl} ...
--> 57 entry/entries in data/lang/phones/disambig.txt
--> data/lang/phones/disambig.int corresponds to data/lang/phones/disambig.txt
--> data/lang/phones/disambig.csl corresponds to data/lang/phones/disambig.txt
--> data/lang/phones/disambig.{txt, int, csl} are OK

Checking data/lang/phones/roots.{txt, int} ...
--> 218 entry/entries in data/lang/phones/roots.txt
--> data/lang/phones/roots.int corresponds to data/lang/phones/roots.txt
--> data/lang/phones/roots.{txt, int} are OK

Checking data/lang/phones/sets.{txt, int} ...
--> 218 entry/entries in data/lang/phones/sets.txt
--> data/lang/phones/sets.int corresponds to data/lang/phones/sets.txt
--> data/lang/phones/sets.{txt, int} are OK

Checking data/lang/phones/extra_questions.{txt, int} ...
--> 7 entry/entries in data/lang/phones/extra_questions.txt
--> data/lang/phones/extra_questions.int corresponds to data/lang/phones/extra_questions.txt
--> data/lang/phones/extra_questions.{txt, int} are OK

Checking optional_silence.txt ...
--> reading data/lang/phones/optional_silence.txt
--> data/lang/phones/optional_silence.txt is OK

Checking disambiguation symbols: #0 and #1
--> data/lang/phones/disambig.txt has "#0" and "#1"
--> data/lang/phones/disambig.txt is OK

Checking topo ...

Checking word-level disambiguation symbols...
--> data/lang/phones/wdisambig.txt exists (newer prepare_lang.sh)
Checking data/lang/oov.{txt, int} ...
--> 1 entry/entries in data/lang/oov.txt
--> data/lang/oov.int corresponds to data/lang/oov.txt
--> data/lang/oov.{txt, int} are OK

--> data/lang/L.fst is olabel sorted
--> data/lang/L_disambig.fst is olabel sorted
--> SUCCESS [validating lang directory data/lang]
Converting 'data/graph/word.3gram.lm.gz' to FST
arpa2fst --disambig-symbol=#0 --read-symbol-table=data/graph/lang/words.txt - data/graph/lang/G.fst 
LOG (arpa2fst[5.1.4-7d53]:Read():arpa-file-parser.cc:96) Reading \data\ section.
LOG (arpa2fst[5.1.4-7d53]:Read():arpa-file-parser.cc:151) Reading \1-grams: section.
LOG (arpa2fst[5.1.4-7d53]:Read():arpa-file-parser.cc:151) Reading \2-grams: section.
LOG (arpa2fst[5.1.4-7d53]:Read():arpa-file-parser.cc:151) Reading \3-grams: section.
LOG (arpa2fst[5.1.4-7d53]:RemoveRedundantStates():arpa-lm-compiler.cc:355) Reduced num-states from 3076353 to 454251
fstisstochastic data/graph/lang/G.fst 
8.99409e-06 -0.832396
Succeeded in formatting LM: 'data/graph/word.3gram.lm.gz'
make phone graph ...
utils/prepare_lang.sh --position_dependent_phones false data/dict_phone <SPOKEN_NOISE> data/local/lang_phone data/lang_phone
Checking data/dict_phone/silence_phones.txt ...
--> reading data/dict_phone/silence_phones.txt
--> data/dict_phone/silence_phones.txt is OK

Checking data/dict_phone/optional_silence.txt ...
--> reading data/dict_phone/optional_silence.txt
--> data/dict_phone/optional_silence.txt is OK

Checking data/dict_phone/nonsilence_phones.txt ...
--> reading data/dict_phone/nonsilence_phones.txt
--> data/dict_phone/nonsilence_phones.txt is OK

Checking disjoint: silence_phones.txt, nonsilence_phones.txt
--> disjoint property is OK.

Checking data/dict_phone/lexicon.txt
--> reading data/dict_phone/lexicon.txt
--> data/dict_phone/lexicon.txt is OK

Checking data/dict_phone/extra_questions.txt ...
--> reading data/dict_phone/extra_questions.txt
--> data/dict_phone/extra_questions.txt is OK
--> SUCCESS [validating dictionary directory data/dict_phone]

**Creating data/dict_phone/lexiconp.txt from data/dict_phone/lexicon.txt
fstaddselfloops data/lang_phone/phones/wdisambig_phones.int data/lang_phone/phones/wdisambig_words.int 
prepare_lang.sh: validating output directory
utils/validate_lang.pl data/lang_phone
Checking data/lang_phone/phones.txt ...
--> data/lang_phone/phones.txt is OK

Checking words.txt: #0 ...
--> data/lang_phone/words.txt is OK

Checking disjoint: silence.txt, nonsilence.txt, disambig.txt ...
--> silence.txt and nonsilence.txt are disjoint
--> silence.txt and disambig.txt are disjoint
--> disambig.txt and nonsilence.txt are disjoint
--> disjoint property is OK

Checking sumation: silence.txt, nonsilence.txt, disambig.txt ...
--> summation property is OK

Checking data/lang_phone/phones/context_indep.{txt, int, csl} ...
--> 1 entry/entries in data/lang_phone/phones/context_indep.txt
--> data/lang_phone/phones/context_indep.int corresponds to data/lang_phone/phones/context_indep.txt
--> data/lang_phone/phones/context_indep.csl corresponds to data/lang_phone/phones/context_indep.txt
--> data/lang_phone/phones/context_indep.{txt, int, csl} are OK

Checking data/lang_phone/phones/nonsilence.{txt, int, csl} ...
--> 217 entry/entries in data/lang_phone/phones/nonsilence.txt
--> data/lang_phone/phones/nonsilence.int corresponds to data/lang_phone/phones/nonsilence.txt
--> data/lang_phone/phones/nonsilence.csl corresponds to data/lang_phone/phones/nonsilence.txt
--> data/lang_phone/phones/nonsilence.{txt, int, csl} are OK

Checking data/lang_phone/phones/silence.{txt, int, csl} ...
--> 1 entry/entries in data/lang_phone/phones/silence.txt
--> data/lang_phone/phones/silence.int corresponds to data/lang_phone/phones/silence.txt
--> data/lang_phone/phones/silence.csl corresponds to data/lang_phone/phones/silence.txt
--> data/lang_phone/phones/silence.{txt, int, csl} are OK

Checking data/lang_phone/phones/optional_silence.{txt, int, csl} ...
--> 1 entry/entries in data/lang_phone/phones/optional_silence.txt
--> data/lang_phone/phones/optional_silence.int corresponds to data/lang_phone/phones/optional_silence.txt
--> data/lang_phone/phones/optional_silence.csl corresponds to data/lang_phone/phones/optional_silence.txt
--> data/lang_phone/phones/optional_silence.{txt, int, csl} are OK

Checking data/lang_phone/phones/disambig.{txt, int, csl} ...
--> 4 entry/entries in data/lang_phone/phones/disambig.txt
--> data/lang_phone/phones/disambig.int corresponds to data/lang_phone/phones/disambig.txt
--> data/lang_phone/phones/disambig.csl corresponds to data/lang_phone/phones/disambig.txt
--> data/lang_phone/phones/disambig.{txt, int, csl} are OK

Checking data/lang_phone/phones/roots.{txt, int} ...
--> 218 entry/entries in data/lang_phone/phones/roots.txt
--> data/lang_phone/phones/roots.int corresponds to data/lang_phone/phones/roots.txt
--> data/lang_phone/phones/roots.{txt, int} are OK

Checking data/lang_phone/phones/sets.{txt, int} ...
--> 218 entry/entries in data/lang_phone/phones/sets.txt
--> data/lang_phone/phones/sets.int corresponds to data/lang_phone/phones/sets.txt
--> data/lang_phone/phones/sets.{txt, int} are OK

Checking data/lang_phone/phones/extra_questions.{txt, int} ...
--> 7 entry/entries in data/lang_phone/phones/extra_questions.txt
--> data/lang_phone/phones/extra_questions.int corresponds to data/lang_phone/phones/extra_questions.txt
--> data/lang_phone/phones/extra_questions.{txt, int} are OK

Checking optional_silence.txt ...
--> reading data/lang_phone/phones/optional_silence.txt
--> data/lang_phone/phones/optional_silence.txt is OK

Checking disambiguation symbols: #0 and #1
--> data/lang_phone/phones/disambig.txt has "#0" and "#1"
--> data/lang_phone/phones/disambig.txt is OK

Checking topo ...

Checking word-level disambiguation symbols...
--> data/lang_phone/phones/wdisambig.txt exists (newer prepare_lang.sh)
Checking data/lang_phone/oov.{txt, int} ...
--> 1 entry/entries in data/lang_phone/oov.txt
--> data/lang_phone/oov.int corresponds to data/lang_phone/oov.txt
--> data/lang_phone/oov.{txt, int} are OK

--> data/lang_phone/L.fst is olabel sorted
--> data/lang_phone/L_disambig.fst is olabel sorted
--> SUCCESS [validating lang directory data/lang_phone]
Converting 'data/graph_phone/phone.3gram.lm.gz' to FST
arpa2fst --disambig-symbol=#0 --read-symbol-table=data/graph_phone/lang/words.txt - data/graph_phone/lang/G.fst 
LOG (arpa2fst[5.1.4-7d53]:Read():arpa-file-parser.cc:96) Reading \data\ section.
LOG (arpa2fst[5.1.4-7d53]:Read():arpa-file-parser.cc:151) Reading \1-grams: section.
LOG (arpa2fst[5.1.4-7d53]:Read():arpa-file-parser.cc:151) Reading \2-grams: section.
LOG (arpa2fst[5.1.4-7d53]:Read():arpa-file-parser.cc:151) Reading \3-grams: section.
LOG (arpa2fst[5.1.4-7d53]:RemoveRedundantStates():arpa-lm-compiler.cc:355) Reduced num-states from 5709 to 4848
fstisstochastic data/graph_phone/lang/G.fst 
8.25152e-07 -3.76792
Succeeded in formatting LM: 'data/graph_phone/phone.3gram.lm.gz'
steps/train_mono.sh --boost-silence 1.25 --nj 8 --cmd run.pl data/mfcc/train data/lang exp/mono
steps/train_mono.sh: Initializing monophone system.
steps/train_mono.sh: Compiling training graphs
steps/train_mono.sh: Aligning data equally (pass 0)
steps/train_mono.sh: Pass 1
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 2
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 3
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 4
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 5
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 6
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 7
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 8
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 9
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 10
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 11
steps/train_mono.sh: Pass 12
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 13
steps/train_mono.sh: Pass 14
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 15
steps/train_mono.sh: Pass 16
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 17
steps/train_mono.sh: Pass 18
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 19
steps/train_mono.sh: Pass 20
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 21
steps/train_mono.sh: Pass 22
steps/train_mono.sh: Pass 23
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 24
steps/train_mono.sh: Pass 25
steps/train_mono.sh: Pass 26
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 27
steps/train_mono.sh: Pass 28
steps/train_mono.sh: Pass 29
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 30
steps/train_mono.sh: Pass 31
steps/train_mono.sh: Pass 32
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 33
steps/train_mono.sh: Pass 34
steps/train_mono.sh: Pass 35
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 36
steps/train_mono.sh: Pass 37
steps/train_mono.sh: Pass 38
steps/train_mono.sh: Aligning data
steps/train_mono.sh: Pass 39
steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/mono
steps/diagnostic/analyze_alignments.sh: see stats in exp/mono/log/analyze_alignments.log
1053 warnings in exp/mono/log/update.*.log
3998 warnings in exp/mono/log/align.*.*.log
116 warnings in exp/mono/log/acc.*.*.log
exp/mono: nj=8 align prob=-100.09 over 25.49h [retry=0.2%, fail=0.0%] states=656 gauss=989
steps/train_mono.sh: Done training monophone system in exp/mono
steps/align_si.sh --boost-silence 1.25 --nj 8 --cmd run.pl data/mfcc/train data/lang exp/mono exp/mono_ali
using monophone to generate graph
WARNING: the --mono, --left-biphone and --quinphone options are now deprecated and ignored.
steps/align_si.sh: feature type is delta
steps/align_si.sh: aligning data in data/mfcc/train using model from exp/mono, putting alignments in exp/mono_ali
tree-info exp/mono/tree 
tree-info exp/mono/tree 
fsttablecompose data/graph/lang/L_disambig.fst data/graph/lang/G.fst 
fstminimizeencoded 
fstpushspecial 
fstdeterminizestar --use-log=true 
steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/mono_ali
steps/diagnostic/analyze_alignments.sh: see stats in exp/mono_ali/log/analyze_alignments.log
steps/align_si.sh: done aligning data.
steps/train_deltas.sh --boost-silence 1.25 --cmd run.pl 2000 10000 data/mfcc/train data/lang exp/mono_ali exp/tri1
steps/train_deltas.sh: accumulating tree stats
steps/train_deltas.sh: getting questions for tree-building, via clustering
steps/train_deltas.sh: building the tree
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 109 with no stats; corresponding phone list: 110 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 121 with no stats; corresponding phone list: 122 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 163 with no stats; corresponding phone list: 164 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 175 with no stats; corresponding phone list: 176 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 176 with no stats; corresponding phone list: 177 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 177 with no stats; corresponding phone list: 178 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 182 with no stats; corresponding phone list: 183 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 203 with no stats; corresponding phone list: 204 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 208 with no stats; corresponding phone list: 209 
** The warnings above about 'no stats' generally mean you have phones **
** (or groups of phones) in your phone set that had no corresponding data. **
** You should probably figure out whether something went wrong, **
** or whether your data just doesn't happen to have examples of those **
** phones. **
steps/train_deltas.sh: converting alignments from exp/mono_ali to use current tree
steps/train_deltas.sh: compiling graphs of transcripts
steps/train_deltas.sh: training pass 1
steps/train_deltas.sh: training pass 2
steps/train_deltas.sh: training pass 3
steps/train_deltas.sh: training pass 4
steps/train_deltas.sh: training pass 5
steps/train_deltas.sh: training pass 6
steps/train_deltas.sh: training pass 7
steps/train_deltas.sh: training pass 8
steps/train_deltas.sh: training pass 9
steps/train_deltas.sh: training pass 10
steps/train_deltas.sh: aligning data
steps/train_deltas.sh: training pass 11
steps/train_deltas.sh: training pass 12
steps/train_deltas.sh: training pass 13
steps/train_deltas.sh: training pass 14
steps/train_deltas.sh: training pass 15
fstisstochastic data/graph/lang/tmp/LG.fst 
-0.0480887 -0.0488874
[info]: LG not stochastic.
fstcomposecontext --context-size=1 --central-position=0 --read-disambig-syms=data/graph/lang/phones/disambig.int --write-disambig-syms=data/graph/lang/tmp/disambig_ilabels_1_0.int data/graph/lang/tmp/ilabels_1_0.23797 
steps/train_deltas.sh: training pass 16
steps/train_deltas.sh: training pass 17
steps/train_deltas.sh: training pass 18
steps/train_deltas.sh: training pass 19
steps/train_deltas.sh: training pass 20
steps/train_deltas.sh: aligning data
fstisstochastic data/graph/lang/tmp/CLG_1_0.fst 
-0.0480887 -0.0488874
[info]: CLG not stochastic.
make-h-transducer --disambig-syms-out=exp/mono/graph_word/disambig_tid.int --transition-scale=1.0 data/graph/lang/tmp/ilabels_1_0 exp/mono/tree exp/mono/final.mdl 
fstrmepslocal 
fstminimizeencoded 
fstdeterminizestar --use-log=true 
fsttablecompose exp/mono/graph_word/Ha.fst data/graph/lang/tmp/CLG_1_0.fst 
fstrmsymbols exp/mono/graph_word/disambig_tid.int 
steps/train_deltas.sh: training pass 21
steps/train_deltas.sh: training pass 22
steps/train_deltas.sh: training pass 23
steps/train_deltas.sh: training pass 24
steps/train_deltas.sh: training pass 25
steps/train_deltas.sh: training pass 26
steps/train_deltas.sh: training pass 27
steps/train_deltas.sh: training pass 28
steps/train_deltas.sh: training pass 29
steps/train_deltas.sh: training pass 30
steps/train_deltas.sh: aligning data
steps/train_deltas.sh: training pass 31
steps/train_deltas.sh: training pass 32
steps/train_deltas.sh: training pass 33
steps/train_deltas.sh: training pass 34
steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/tri1
steps/diagnostic/analyze_alignments.sh: see stats in exp/tri1/log/analyze_alignments.log
95 warnings in exp/tri1/log/align.*.*.log
1 warnings in exp/tri1/log/compile_questions.log
1 warnings in exp/tri1/log/build_tree.log
9 warnings in exp/tri1/log/questions.log
9 warnings in exp/tri1/log/init_model.log
281 warnings in exp/tri1/log/update.*.log
79 warnings in exp/tri1/log/acc.*.*.log
exp/tri1: nj=8 align prob=-96.75 over 25.48h [retry=0.4%, fail=0.0%] states=1671 gauss=10024 tree-impr=4.75
steps/train_deltas.sh: Done training system with delta+delta-delta features in exp/tri1
steps/align_si.sh --nj 8 --cmd run.pl data/mfcc/train data/lang exp/tri1 exp/tri1_ali
steps/align_si.sh: feature type is delta
steps/align_si.sh: aligning data in data/mfcc/train using model from exp/tri1, putting alignments in exp/tri1_ali
tree-info exp/tri1/tree 
tree-info exp/tri1/tree 
fstcomposecontext --context-size=3 --central-position=1 --read-disambig-syms=data/graph/lang/phones/disambig.int --write-disambig-syms=data/graph/lang/tmp/disambig_ilabels_3_1.int data/graph/lang/tmp/ilabels_3_1.30105 
steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/tri1_ali
fstisstochastic data/graph/lang/tmp/CLG_3_1.fst 
steps/diagnostic/analyze_alignments.sh: see stats in exp/tri1_ali/log/analyze_alignments.log
steps/align_si.sh: done aligning data.
steps/train_lda_mllt.sh --cmd run.pl --splice-opts --left-context=3 --right-context=3 2500 15000 data/mfcc/train data/lang exp/tri1_ali exp/tri2b
Accumulating LDA statistics.
0 -0.0488874
Accumulating tree stats
[info]: CLG not stochastic.
make-h-transducer --disambig-syms-out=exp/tri1/graph_word/disambig_tid.int --transition-scale=1.0 data/graph/lang/tmp/ilabels_3_1 exp/tri1/tree exp/tri1/final.mdl 
fstminimizeencoded 
fstrmepslocal 
fstdeterminizestar --use-log=true 
fstrmsymbols exp/tri1/graph_word/disambig_tid.int 
fsttablecompose exp/tri1/graph_word/Ha.fst data/graph/lang/tmp/CLG_3_1.fst 
Getting questions for tree clustering.
Building the tree
ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstdeterminizestar[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstdeterminizestar() [0x626f94]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstrmsymbols[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstrmsymbols() [0x54d84a]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstrmepslocal[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstrmepslocal() [0x573986]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstminimizeencoded[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstminimizeencoded() [0x5c3afe]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

steps/train_lda_mllt.sh: Initializing the model
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 109 with no stats; corresponding phone list: 110 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 121 with no stats; corresponding phone list: 122 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 163 with no stats; corresponding phone list: 164 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 175 with no stats; corresponding phone list: 176 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 176 with no stats; corresponding phone list: 177 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 203 with no stats; corresponding phone list: 204 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 208 with no stats; corresponding phone list: 209 
This is a bad warning.
Converting alignments from exp/tri1_ali to use current tree
Compiling graphs of transcripts
Training pass 1
Training pass 2
Estimating MLLT
Training pass 3
Training pass 4
Estimating MLLT
Training pass 5
fstisstochastic exp/mono/graph_word/HCLGa.fst 
Training pass 6
Estimating MLLT
0.644531 -0.097426
HCLGa is not stochastic
add-self-loops --self-loop-scale=0.1 --reorder=true exp/mono/final.mdl 
Training pass 7
Training pass 8
Training pass 9
Training pass 10
Aligning data
steps/decode.sh --cmd run.pl --mem 4G --nj 8 exp/mono/graph_word data/mfcc/test exp/mono/decode_test_word
decode.sh: feature type is delta
bash: line 1:   768 Killed                  ( gmm-latgen-faster --max-active=7000 --beam=13.0 --lattice-beam=6.0 --acoustic-scale=0.083333 --allow-partial=true --word-symbol-table=exp/mono/graph_word/words.txt exp/mono/final.mdl exp/mono/graph_word/HCLG.fst "ark,s,cs:apply-cmvn  --utt2spk=ark:data/mfcc/test/split8/3/utt2spk scp:data/mfcc/test/split8/3/cmvn.scp scp:data/mfcc/test/split8/3/feats.scp ark:- | add-deltas  ark:- ark:- |" "ark:|gzip -c > exp/mono/decode_test_word/lat.3.gz" ) 2>> exp/mono/decode_test_word/log/decode.3.log >> exp/mono/decode_test_word/log/decode.3.log
bash: line 1:   761 Killed                  ( gmm-latgen-faster --max-active=7000 --beam=13.0 --lattice-beam=6.0 --acoustic-scale=0.083333 --allow-partial=true --word-symbol-table=exp/mono/graph_word/words.txt exp/mono/final.mdl exp/mono/graph_word/HCLG.fst "ark,s,cs:apply-cmvn  --utt2spk=ark:data/mfcc/test/split8/1/utt2spk scp:data/mfcc/test/split8/1/cmvn.scp scp:data/mfcc/test/split8/1/feats.scp ark:- | add-deltas  ark:- ark:- |" "ark:|gzip -c > exp/mono/decode_test_word/lat.1.gz" ) 2>> exp/mono/decode_test_word/log/decode.1.log >> exp/mono/decode_test_word/log/decode.1.log
Training pass 11
bash: line 1:   771 Killed                  ( gmm-latgen-faster --max-active=7000 --beam=13.0 --lattice-beam=6.0 --acoustic-scale=0.083333 --allow-partial=true --word-symbol-table=exp/mono/graph_word/words.txt exp/mono/final.mdl exp/mono/graph_word/HCLG.fst "ark,s,cs:apply-cmvn  --utt2spk=ark:data/mfcc/test/split8/4/utt2spk scp:data/mfcc/test/split8/4/cmvn.scp scp:data/mfcc/test/split8/4/feats.scp ark:- | add-deltas  ark:- ark:- |" "ark:|gzip -c > exp/mono/decode_test_word/lat.4.gz" ) 2>> exp/mono/decode_test_word/log/decode.4.log >> exp/mono/decode_test_word/log/decode.4.log
bash: line 1:   763 Killed                  ( gmm-latgen-faster --max-active=7000 --beam=13.0 --lattice-beam=6.0 --acoustic-scale=0.083333 --allow-partial=true --word-symbol-table=exp/mono/graph_word/words.txt exp/mono/final.mdl exp/mono/graph_word/HCLG.fst "ark,s,cs:apply-cmvn  --utt2spk=ark:data/mfcc/test/split8/5/utt2spk scp:data/mfcc/test/split8/5/cmvn.scp scp:data/mfcc/test/split8/5/feats.scp ark:- | add-deltas  ark:- ark:- |" "ark:|gzip -c > exp/mono/decode_test_word/lat.5.gz" ) 2>> exp/mono/decode_test_word/log/decode.5.log >> exp/mono/decode_test_word/log/decode.5.log
Training pass 12
Estimating MLLT
bash: line 1:   764 Killed                  ( gmm-latgen-faster --max-active=7000 --beam=13.0 --lattice-beam=6.0 --acoustic-scale=0.083333 --allow-partial=true --word-symbol-table=exp/mono/graph_word/words.txt exp/mono/final.mdl exp/mono/graph_word/HCLG.fst "ark,s,cs:apply-cmvn  --utt2spk=ark:data/mfcc/test/split8/7/utt2spk scp:data/mfcc/test/split8/7/cmvn.scp scp:data/mfcc/test/split8/7/feats.scp ark:- | add-deltas  ark:- ark:- |" "ark:|gzip -c > exp/mono/decode_test_word/lat.7.gz" ) 2>> exp/mono/decode_test_word/log/decode.7.log >> exp/mono/decode_test_word/log/decode.7.log
Training pass 13
Training pass 14
Training pass 15
Training pass 16
Training pass 17
Training pass 18
Training pass 19
Training pass 20
Aligning data
Training pass 21
Training pass 22
Training pass 23
Training pass 24
Training pass 25
Training pass 26
Training pass 27
Training pass 28
Training pass 29
Training pass 30
Aligning data
Training pass 31
Training pass 32
Training pass 33
Training pass 34
steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/tri2b
steps/diagnostic/analyze_alignments.sh: see stats in exp/tri2b/log/analyze_alignments.log
1 warnings in exp/tri2b/log/build_tree.log
9 warnings in exp/tri2b/log/init_model.log
4 warnings in exp/tri2b/log/lda_acc.*.log
173 warnings in exp/tri2b/log/align.*.*.log
131 warnings in exp/tri2b/log/acc.*.*.log
272 warnings in exp/tri2b/log/update.*.log
7 warnings in exp/tri2b/log/questions.log
1 warnings in exp/tri2b/log/compile_questions.log
exp/tri2b: nj=8 align prob=-48.26 over 25.48h [retry=0.5%, fail=0.0%] states=2112 gauss=15037 tree-impr=4.32 lda-sum=24.00 mllt:impr,logdet=1.21,1.73
Done training system with LDA+MLLT features in exp/tri2b
steps/align_si.sh --nj 8 --cmd run.pl --use-graphs true data/mfcc/train data/lang exp/tri2b exp/tri2b_ali
tree-info exp/tri2b/tree 
tree-info exp/tri2b/tree 
steps/align_si.sh: feature type is lda
steps/align_si.sh: aligning data in data/mfcc/train using model from exp/tri2b, putting alignments in exp/tri2b_ali
make-h-transducer --disambig-syms-out=exp/tri2b/graph_word/disambig_tid.int --transition-scale=1.0 data/graph/lang/tmp/ilabels_3_1 exp/tri2b/tree exp/tri2b/final.mdl 
fstrmepslocal 
fstminimizeencoded 
fsttablecompose exp/tri2b/graph_word/Ha.fst data/graph/lang/tmp/CLG_3_1.fst 
fstrmsymbols exp/tri2b/graph_word/disambig_tid.int 
fstdeterminizestar --use-log=true 
bash: line 1:   770 Killed                  ( gmm-latgen-faster --max-active=7000 --beam=13.0 --lattice-beam=6.0 --acoustic-scale=0.083333 --allow-partial=true --word-symbol-table=exp/mono/graph_word/words.txt exp/mono/final.mdl exp/mono/graph_word/HCLG.fst "ark,s,cs:apply-cmvn  --utt2spk=ark:data/mfcc/test/split8/6/utt2spk scp:data/mfcc/test/split8/6/cmvn.scp scp:data/mfcc/test/split8/6/feats.scp ark:- | add-deltas  ark:- ark:- |" "ark:|gzip -c > exp/mono/decode_test_word/lat.6.gz" ) 2>> exp/mono/decode_test_word/log/decode.6.log >> exp/mono/decode_test_word/log/decode.6.log
ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstdeterminizestar[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstdeterminizestar() [0x626f94]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstrmsymbols[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstrmsymbols() [0x54d84a]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstrmepslocal[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstrmepslocal() [0x573986]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstminimizeencoded[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstminimizeencoded() [0x5c3afe]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/tri2b_ali
steps/diagnostic/analyze_alignments.sh: see stats in exp/tri2b_ali/log/analyze_alignments.log
steps/align_si.sh: done aligning data.
steps/train_sat.sh --cmd run.pl 2500 15000 data/mfcc/train data/lang exp/tri2b_ali exp/tri3b
steps/train_sat.sh: feature type is lda
steps/train_sat.sh: obtaining initial fMLLR transforms since not present in exp/tri2b_ali
steps/train_sat.sh: Accumulating tree stats
steps/train_sat.sh: Getting questions for tree clustering.
steps/train_sat.sh: Building the tree
steps/train_sat.sh: Initializing the model
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 109 with no stats; corresponding phone list: 110 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 121 with no stats; corresponding phone list: 122 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 163 with no stats; corresponding phone list: 164 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 175 with no stats; corresponding phone list: 176 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 176 with no stats; corresponding phone list: 177 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 177 with no stats; corresponding phone list: 178 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 203 with no stats; corresponding phone list: 204 
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmm():gmm-init-model.cc:55) Tree has pdf-id 208 with no stats; corresponding phone list: 209 
This is a bad warning.
steps/train_sat.sh: Converting alignments from exp/tri2b_ali to use current tree
steps/train_sat.sh: Compiling graphs of transcripts
Pass 1
Pass 2
Estimating fMLLR transforms
Pass 3
Pass 4
Estimating fMLLR transforms
Pass 5
Pass 6
Estimating fMLLR transforms
Pass 7
Pass 8
Pass 9
Pass 10
Aligning data
Pass 11
Pass 12
Estimating fMLLR transforms
Pass 13
Pass 14
Pass 15
Pass 16
Pass 17
Pass 18
Pass 19
Pass 20
Aligning data
Pass 21
Pass 22
Pass 23
Pass 24
Pass 25
Pass 26
Pass 27
Pass 28
Pass 29
Pass 30
Aligning data
Pass 31
Pass 32
Pass 33
Pass 34
steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/tri3b
steps/diagnostic/analyze_alignments.sh: see stats in exp/tri3b/log/analyze_alignments.log
8 warnings in exp/tri3b/log/questions.log
211 warnings in exp/tri3b/log/align.*.*.log
272 warnings in exp/tri3b/log/update.*.log
16 warnings in exp/tri3b/log/fmllr.*.*.log
127 warnings in exp/tri3b/log/acc.*.*.log
1 warnings in exp/tri3b/log/build_tree.log
9 warnings in exp/tri3b/log/init_model.log
1 warnings in exp/tri3b/log/compile_questions.log
8 warnings in exp/tri3b/log/est_alimdl.log
steps/train_sat.sh: Likelihood evolution:
-49.8191 -49.6232 -49.5207 -49.3232 -48.7195 -48.1826 -47.8333 -47.6169 -47.4615 -47.0208 -46.8384 -46.647 -46.5195 -46.4132 -46.3139 -46.2273 -46.1518 -46.0825 -46.0129 -45.8584 -45.7677 -45.7128 -45.662 -45.615 -45.5706 -45.5267 -45.4834 -45.4412 -45.399 -45.3094 -45.2536 -45.2305 -45.2164 -45.2068 
exp/tri3b: nj=8 align prob=-48.02 over 25.48h [retry=0.5%, fail=0.0%] states=2074 gauss=15024 fmllr-impr=2.42 over 18.98h tree-impr=6.30
steps/train_sat.sh: done training SAT system in exp/tri3b
steps/align_fmllr.sh --nj 8 --cmd run.pl data/mfcc/train data/lang exp/tri3b exp/tri3b_ali
steps/align_fmllr.sh: feature type is lda
steps/align_fmllr.sh: compiling training graphs
tree-info exp/tri3b/tree 
tree-info exp/tri3b/tree 
make-h-transducer --disambig-syms-out=exp/tri3b/graph_word/disambig_tid.int --transition-scale=1.0 data/graph/lang/tmp/ilabels_3_1 exp/tri3b/tree exp/tri3b/final.mdl 
fstminimizeencoded 
fstrmepslocal 
fstdeterminizestar --use-log=true 
fstrmsymbols exp/tri3b/graph_word/disambig_tid.int 
fsttablecompose exp/tri3b/graph_word/Ha.fst data/graph/lang/tmp/CLG_3_1.fst 
steps/align_fmllr.sh: aligning data in data/mfcc/train using exp/tri3b/final.alimdl and speaker-independent features.
ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstdeterminizestar[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstdeterminizestar() [0x626f94]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstrmsymbols[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstrmsymbols() [0x54d84a]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstrmepslocal[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstrmepslocal() [0x573986]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstminimizeencoded[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstminimizeencoded() [0x5c3afe]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

steps/align_fmllr.sh: computing fMLLR transforms
steps/align_fmllr.sh: doing final alignment.
steps/align_fmllr.sh: done aligning data.
steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/tri3b_ali
steps/diagnostic/analyze_alignments.sh: see stats in exp/tri3b_ali/log/analyze_alignments.log
54 warnings in exp/tri3b_ali/log/align_pass2.*.log
3 warnings in exp/tri3b_ali/log/fmllr.*.log
31 warnings in exp/tri3b_ali/log/align_pass1.*.log
steps/train_quick.sh --cmd run.pl 4200 40000 data/mfcc/train data/lang exp/tri3b_ali exp/tri4b
steps/train_quick.sh: feature type is lda
steps/train_quick.sh: using transforms from exp/tri3b_ali
steps/train_quick.sh: accumulating tree stats
steps/train_quick.sh: Getting questions for tree clustering.
steps/train_quick.sh: Building the tree
steps/train_quick.sh: Initializing the model
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmmFromOld():gmm-init-model.cc:147) Leaf 109 of new tree has no stats.
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmmFromOld():gmm-init-model.cc:147) Leaf 121 of new tree has no stats.
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmmFromOld():gmm-init-model.cc:147) Leaf 163 of new tree has no stats.
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmmFromOld():gmm-init-model.cc:147) Leaf 175 of new tree has no stats.
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmmFromOld():gmm-init-model.cc:147) Leaf 176 of new tree has no stats.
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmmFromOld():gmm-init-model.cc:147) Leaf 177 of new tree has no stats.
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmmFromOld():gmm-init-model.cc:147) Leaf 203 of new tree has no stats.
WARNING (gmm-init-model[5.1.4-7d53]:InitAmGmmFromOld():gmm-init-model.cc:147) Leaf 208 of new tree has no stats.
steps/train_quick.sh: This is a bad warning.
steps/train_quick.sh: mixing up old model.
steps/train_quick.sh: converting old alignments
steps/train_quick.sh: compiling training graphs
steps/train_quick.sh: pass 1
steps/train_quick.sh: pass 2
steps/train_quick.sh: pass 3
steps/train_quick.sh: pass 4
steps/train_quick.sh: pass 5
steps/train_quick.sh: pass 6
steps/train_quick.sh: pass 7
steps/train_quick.sh: pass 8
steps/train_quick.sh: pass 9
steps/train_quick.sh: pass 10
steps/train_quick.sh: aligning data
steps/train_quick.sh: pass 11
steps/train_quick.sh: pass 12
steps/train_quick.sh: pass 13
steps/train_quick.sh: pass 14
steps/train_quick.sh: pass 15
steps/train_quick.sh: aligning data
steps/train_quick.sh: pass 16
steps/train_quick.sh: pass 17
steps/train_quick.sh: pass 18
steps/train_quick.sh: pass 19
steps/train_quick.sh: estimating alignment model
Done
steps/align_fmllr.sh --nj 8 --cmd run.pl data/mfcc/train data/lang exp/tri4b exp/tri4b_ali
steps/align_fmllr.sh: feature type is lda
steps/align_fmllr.sh: compiling training graphs
tree-info exp/tri4b/tree 
tree-info exp/tri4b/tree 
make-h-transducer --disambig-syms-out=exp/tri4b/graph_word/disambig_tid.int --transition-scale=1.0 data/graph/lang/tmp/ilabels_3_1 exp/tri4b/tree exp/tri4b/final.mdl 
fstminimizeencoded 
fstrmepslocal 
fstdeterminizestar --use-log=true 
fstrmsymbols exp/tri4b/graph_word/disambig_tid.int 
fsttablecompose exp/tri4b/graph_word/Ha.fst data/graph/lang/tmp/CLG_3_1.fst 
ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstdeterminizestar[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstdeterminizestar() [0x626f94]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstrmsymbols[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstrmsymbols() [0x54d84a]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstrmepslocal[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstrmepslocal() [0x573986]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

steps/align_fmllr.sh: aligning data in data/mfcc/train using exp/tri4b/final.alimdl and speaker-independent features.
ERROR: FstHeader::Read: Bad FST header: -
ERROR (fstminimizeencoded[5.1.4-7d53]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input

[ Stack-Trace: ]
fstminimizeencoded() [0x5c3afe]
kaldi::MessageLogger::HandleMessage(kaldi::LogMessageEnvelope const&, char const*)
kaldi::MessageLogger::~MessageLogger()
fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)
main
__libc_start_main
_start

steps/align_fmllr.sh: computing fMLLR transforms
steps/align_fmllr.sh: doing final alignment.
steps/align_fmllr.sh: done aligning data.
steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/tri4b_ali
steps/diagnostic/analyze_alignments.sh: see stats in exp/tri4b_ali/log/analyze_alignments.log
40 warnings in exp/tri4b_ali/log/align_pass2.*.log
3 warnings in exp/tri4b_ali/log/fmllr.*.log
30 warnings in exp/tri4b_ali/log/align_pass1.*.log
steps/align_fmllr.sh --nj 8 --cmd run.pl data/mfcc/dev data/lang exp/tri4b exp/tri4b_ali_cv
steps/align_fmllr.sh: feature type is lda
steps/align_fmllr.sh: compiling training graphs
steps/align_fmllr.sh: aligning data in data/mfcc/dev using exp/tri4b/final.alimdl and speaker-independent features.
steps/align_fmllr.sh: computing fMLLR transforms
steps/align_fmllr.sh: doing final alignment.
steps/align_fmllr.sh: done aligning data.
steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/tri4b_ali_cv
steps/diagnostic/analyze_alignments.sh: see stats in exp/tri4b_ali_cv/log/analyze_alignments.log
4 warnings in exp/tri4b_ali_cv/log/align_pass2.*.log
4 warnings in exp/tri4b_ali_cv/log/align_pass1.*.log
DNN training: stage 0: feature generation
producing fbank for train
steps/make_fbank.sh --nj 8 --cmd run.pl data/fbank/train exp/make_fbank/train fbank/train
utils/validate_data_dir.sh: Successfully validated data-directory data/fbank/train
steps/make_fbank.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance.
Succeeded creating filterbank features for train
steps/compute_cmvn_stats.sh data/fbank/train exp/fbank_cmvn/train fbank/train
Succeeded creating CMVN stats for train
producing fbank for dev
steps/make_fbank.sh --nj 8 --cmd run.pl data/fbank/dev exp/make_fbank/dev fbank/dev
utils/validate_data_dir.sh: Successfully validated data-directory data/fbank/dev
steps/make_fbank.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance.
Succeeded creating filterbank features for dev
steps/compute_cmvn_stats.sh data/fbank/dev exp/fbank_cmvn/dev fbank/dev
Succeeded creating CMVN stats for dev
producing fbank for test
steps/make_fbank.sh --nj 8 --cmd run.pl data/fbank/test exp/make_fbank/test fbank/test
utils/validate_data_dir.sh: Successfully validated data-directory data/fbank/test
steps/make_fbank.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance.
Succeeded creating filterbank features for test
steps/compute_cmvn_stats.sh data/fbank/test exp/fbank_cmvn/test fbank/test
Succeeded creating CMVN stats for test
producing test_fbank_phone
local/nnet/run_dnn.sh: line 45: exp/tri4b_dnn/log/train_nnet.log: No such file or directory

© 著作权归作者所有

MtrS
粉丝 36
博文 698
码字总数 419342
作品 0
榆林
私信 提问
Kaldi(4)model文件分析

上一节提到了解码需要声学模型()和语言模型(),这节就来看一看这个model文件里是什么东西。 Ref Dan's DNN implementation http://kaldi-asr.org/doc/dnn2.html Kaldi Lecture 4 Decoders u...

Seeker_zz
2018/03/12
0
0
基于深度神经网络的语音识别方法

Kaldi 语音工具箱的简介 Kaldi 语音工具箱[61]是由微软研究院Povey 等人研究的应用于语音识别方面的开源工具箱。该工具箱是用 C++编写而成的,而且具有灵活性、扩展性。 该工具箱的函数库是 ...

chenxiao60
2016/06/16
415
0
语音识别工具--Kaldi

Kaldi 是一个语音识别工具。使用 C++ 开发,基于 Apache 许可证。目的是为语音识别研究者提供。 Kaldi's versus other toolkits Kaldi is similar in aims and scope to HTK. The goal is t...

匿名
2016/02/04
4.9K
1
Kaldi 集成 TensorFlow,两个开源社区要一起玩耍了

由于近年来虚拟个人助理的迅猛发展和深度学习算法的运用所带来的字词识别准确率的飞跃,自动语音识别 (ASR) 已经得到广泛的采用。许多语音识别团队都依靠 Kaldi,这是一款广受欢迎的开放源代...

王练
2017/09/06
1K
4
Kaldi语音识别库linux环境下的安装和编译

介绍: Kaldi语音识别库可以说是,HTK数据库的整理加强版,将HTK比较零碎的各种各样的指令和功能进行整理,使用更加的方便,同时也加入了深度神经网络的分类器(DNN),本身由原来做HTK开发的人...

找一片天空散步
2014/01/06
5.3K
1

没有更多内容

加载失败,请刷新页面

加载更多

关于AsyncTask的onPostExcute方法是否会在Activity重建过程中调用的问题

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接:https://blog.csdn.net/XG1057415595/article/details/86774575 假设下面一种情况...

shzwork
今天
6
0
object 类中有哪些方法?

getClass(): 获取运行时类的对象 equals():判断其他对象是否与此对象相等 hashcode():返回该对象的哈希码值 toString():返回该对象的字符串表示 clone(): 创建并返此对象的一个副本 wait...

happywe
今天
6
0
Docker容器实战(七) - 容器中进程视野下的文件系统

前两文中,讲了Linux容器最基础的两种技术 Namespace 作用是“隔离”,它让应用进程只能看到该Namespace内的“世界” Cgroups 作用是“限制”,它给这个“世界”围上了一圈看不见的墙 这么一...

JavaEdge
今天
8
0
文件访问和共享的方法介绍

在上一篇文章中,你了解到文件有三个不同的权限集。拥有该文件的用户有一个集合,拥有该文件的组的成员有一个集合,然后最终一个集合适用于其他所有人。在长列表(ls -l)中这些权限使用符号...

老孟的Linux私房菜
今天
7
0
面试套路题目

作者:抱紧超越小姐姐 链接:https://www.nowcoder.com/discuss/309292?type=3 来源:牛客网 面试时候的潜台词 抱紧超越小姐姐 编辑于 2019-10-15 16:14:56APP内打开赞 3 | 收藏 4 | 回复24 ...

MtrS
今天
5
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部