文档章节

使用linux 内核中代码之--list

韩工
 韩工
发布于 2012/04/16 10:05
字数 2973
阅读 256
收藏 0

【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>>

修改了一下linux 内核3.3 中的list.h,

可以在自己的程序中直接使用;

list 

直接上代码比较实在。

#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H


#ifdef __cplusplus
extern "C" {
#endif


#ifndef NULL
#define NULL (void *) 0x0
#endif
/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */
#ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif


#define container_of(ptr, type, member) ( { \
        const typeof( ((type *)0)->member ) *__mptr = (ptr); \
        (type *)( (char *)__mptr - offsetof(type,member) ); } )
 
static inline void prefetch(const void *x) {;}
static inline void prefetchw(const void *x) {;}


#define LIST_POISON1  ((void *) 0x00100100)
#define LIST_POISON2  ((void *) 0x00200200)


struct list_head {
        struct list_head *next, *prev;
};


#define LIST_HEAD_INIT(name) { &(name), &(name) }


#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)


static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}


/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
     struct list_head *prev,
     struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
     struct list_head *prev,
     struct list_head *next);
#endif


/**
 * list_add - add a new entry
 * @new : new entry to be added
 * @head : list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head, head->next);
}




/**
 * list_add_tail - add a new entry
 * @new : new entry to be added
 * @head : list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
}


/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}


/**
 * list_del - deletes entry from list.
 * @entry : the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
#ifndef CONFIG_DEBUG_LIST
static inline void __list_del_entry(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
}


static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif


/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old,
struct list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}


static inline void list_replace_init(struct list_head *old,
struct list_head *new)
{
list_replace(old, new);
INIT_LIST_HEAD(old);
}


/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry : the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
__list_del_entry(entry);
INIT_LIST_HEAD(entry);
}


/**
 * list_move - delete from one list and add as another's head
 * @list : the entry to move
 * @head : the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head)
{
__list_del_entry(list);
list_add(list, head);
}


/**
 * list_move_tail - delete from one list and add as another's tail
 * @list : the entry to move
 * @head : the head that will follow our entry
 */
static inline void list_move_tail(struct list_head *list,
 struct list_head *head)
{
__list_del_entry(list);
list_add_tail(list, head);
}


/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list : the entry to test
 * @head : the head of the list
 */
static inline int list_is_last(const struct list_head *list,
const struct list_head *head)
{
return list->next == head;
}


/**
 * list_empty - tests whether a list is empty
 * @head : the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}


/**
 * list_empty_careful - tests whether a list is empty and not being modified
 * @head : the list to test
 *
 * Description:
 * tests whether a list is empty _and_ checks that no other CPU might be
 * in the process of modifying either member (next or prev)
 *
 * NOTE: using list_empty_careful() without synchronization
 * can only be safe if the only activity that can happen
 * to the list entry is list_del_init(). Eg. it cannot be used
 * if another CPU could re-list_add() it.
 */
static inline int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
}


/**
 * list_rotate_left - rotate the list to the left
 * @head : the head of the list
 */
static inline void list_rotate_left(struct list_head *head)
{
struct list_head *first;


if (!list_empty(head)) {
first = head->next;
list_move_tail(first, head);
}
}


/**
 * list_is_singular - tests whether a list has just one entry.
 * @head : the list to test.
 */
static inline int list_is_singular(const struct list_head *head)
{
return !list_empty(head) && (head->next == head->prev);
}


static inline void __list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
struct list_head *new_first = entry->next;
list->next = head->next;
list->next->prev = list;
list->prev = entry;
entry->next = list;
head->next = new_first;
new_first->prev = head;
}


/**
 * list_cut_position - cut a list into two
 * @list : a new list to add all removed entries
 * @head : a list with entries
 * @entry : an entry within head, could be the head itself
 * and if so we won't cut the list
 *
 * This helper moves the initial part of @head , up to and
 * including @entry , from @head to @list. You should
 * pass on @entry an element you know is on @head. @list
 * should be an empty list or a list you do not care about
 * losing its data.
 *
 */
static inline void list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
if (list_empty(head))
return;
if (list_is_singular(head) &&
(head->next != entry && head != entry))
return;
if (entry == head)
INIT_LIST_HEAD(list);
else
__list_cut_position(list, head, entry);
}


static inline void __list_splice(const struct list_head *list,
struct list_head *prev,
struct list_head *next)
{
struct list_head *first = list->next;
struct list_head *last = list->prev;


first->prev = prev;
prev->next = first;


last->next = next;
next->prev = last;
}


/**
 * list_splice - join two lists, this is designed for stacks
 * @list : the new list to add.
 * @head : the place to add it in the first list.
 */
static inline void list_splice(const struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head, head->next);
}


/**
 * list_splice_tail - join two lists, each list being a queue
 * @list : the new list to add.
 * @head : the place to add it in the first list.
 */
static inline void list_splice_tail(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head->prev, head);
}


/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list : the new list to add.
 * @head : the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
   struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head, head->next);
INIT_LIST_HEAD(list);
}
}


/**
 * list_splice_tail_init - join two lists and reinitialise the emptied list
 * @list : the new list to add.
 * @head : the place to add it in the first list.
 *
 * Each of the lists is a queue.
 * The list at @list is reinitialised
 */
static inline void list_splice_tail_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head->prev, head);
INIT_LIST_HEAD(list);
}
}


/**
 * list_entry - get the struct for this entry
 * @ptr: the &struct list_head pointer.
 * @type: the type of the struct this is embedded in.
 * @member: the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member) \
container_of(ptr, type, member)


/**
 * list_first_entry - get the first element from a list
 * @ptr: the list head to take the element from.
 * @type: the type of the struct this is embedded in.
 * @member: the name of the list_struct within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)


/**
 * list_for_each - iterate over a list
 * @pos: the &struct list_head to use as a loop cursor.
 * @head : the head for your list.
 */
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)


/**
 * __list_for_each - iterate over a list
 * @pos: the &struct list_head to use as a loop cursor.
 * @head : the head for your list.
 *
 * This variant doesn't differ from list_for_each() any more.
 * We don't do prefetching in either case.
 */
#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)


/**
 * list_for_each_prev - iterate over a list backwards
 * @pos: the &struct list_head to use as a loop cursor.
 * @head : the head for your list.
 */
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; pos != (head); pos = pos->prev)


/**
 * list_for_each_safe - iterate over a list safe against removal of list entry
 * @pos: the &struct list_head to use as a loop cursor.
 * @n: another &struct list_head to use as temporary storage
 * @head : the head for your list.
 */
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)


/**
 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 * @pos: the &struct list_head to use as a loop cursor.
 * @n: another &struct list_head to use as temporary storage
 * @head : the head for your list.
 */
#define list_for_each_prev_safe(pos, n, head) \
for (pos = (head)->prev, n = pos->prev; \
    pos != (head); \
    pos = n, n = pos->prev)


/**
 * list_for_each_entry - iterate over list of given type
 * @pos: the type * to use as a loop cursor.
 * @head : the head for your list.
 * @member: the name of the list_struct within the struct.
 */
#define list_for_each_entry(pos, head, member)  \
for (pos = list_entry((head)->next, typeof(*pos), member); \
    &pos->member != (head);  \
    pos = list_entry(pos->member.next, typeof(*pos), member))


/**
 * list_for_each_entry_reverse - iterate backwards over list of given type.
 * @pos: the type * to use as a loop cursor.
 * @head : the head for your list.
 * @member: the name of the list_struct within the struct.
 */
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member); \
    &pos->member != (head);  \
    pos = list_entry(pos->member.prev, typeof(*pos), member))


/**
 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 * @pos: the type * to use as a start point
 * @head : the head of the list
 * @member: the name of the list_struct within the struct.
 *
 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 */
#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, typeof(*pos), member))


/**
 * list_for_each_entry_continue - continue iteration over list of given type
 * @pos: the type * to use as a loop cursor.
 * @head : the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Continue to iterate over list of given type, continuing after
 * the current position.
 */
#define list_for_each_entry_continue(pos, head, member)  \
for (pos = list_entry(pos->member.next, typeof(*pos), member); \
    &pos->member != (head); \
    pos = list_entry(pos->member.next, typeof(*pos), member))


/**
 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 * @pos: the type * to use as a loop cursor.
 * @head : the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Start to iterate over list of given type backwards, continuing after
 * the current position.
 */
#define list_for_each_entry_continue_reverse(pos, head, member) \
for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
    &pos->member != (head); \
    pos = list_entry(pos->member.prev, typeof(*pos), member))


/**
 * list_for_each_entry_from - iterate over list of given type from the current point
 * @pos: the type * to use as a loop cursor.
 * @head : the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Iterate over list of given type, continuing from current position.
 */
#define list_for_each_entry_from(pos, head, member)  \
for (; &pos->member != (head); \
    pos = list_entry(pos->member.next, typeof(*pos), member))


/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos: the type * to use as a loop cursor.
 * @n: another type * to use as temporary storage
 * @head : the head for your list.
 * @member: the name of the list_struct within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
    &pos->member != (head);  \
    pos = n, n = list_entry(n->member.next, typeof(*n), member))


/**
 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 * @pos: the type * to use as a loop cursor.
 * @n: another type * to use as temporary storage
 * @head : the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Iterate over list of given type, continuing after current point,
 * safe against removal of list entry.
 */
#define list_for_each_entry_safe_continue(pos, n, head, member)  \
for (pos = list_entry(pos->member.next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
    &pos->member != (head); \
    pos = n, n = list_entry(n->member.next, typeof(*n), member))


/**
 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 * @pos: the type * to use as a loop cursor.
 * @n: another type * to use as temporary storage
 * @head : the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Iterate over list of given type from current point, safe against
 * removal of list entry.
 */
#define list_for_each_entry_safe_from(pos, n, head, member)  \
for (n = list_entry(pos->member.next, typeof(*pos), member); \
    &pos->member != (head); \
    pos = n, n = list_entry(n->member.next, typeof(*n), member))


/**
 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 * @pos: the type * to use as a loop cursor.
 * @n: another type * to use as temporary storage
 * @head : the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Iterate backwards over list of given type, safe against removal
 * of list entry.
 */
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member), \
n = list_entry(pos->member.prev, typeof(*pos), member); \
    &pos->member != (head);  \
    pos = n, n = list_entry(n->member.prev, typeof(*n), member))


/**
 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
 * @pos: the loop cursor used in the list_for_each_entry_safe loop
 * @n: temporary storage used in list_for_each_entry_safe
 * @member: the name of the list_struct within the struct.
 *
 * list_safe_reset_next is not safe to use in general if the list may be
 * modified concurrently (eg. the lock is dropped in the loop body). An
 * exception to this is if the cursor element (pos) is pinned in the list,
 * and list_safe_reset_next is called after re-taking the lock and before
 * completing the current iteration of the loop body.
 */
#define list_safe_reset_next(pos, n, member)  \
n = list_entry(pos->member.next, typeof(*pos), member)


/*
 * Double linked lists with a single pointer list head.
 * Mostly useful for hash tables where the two pointer list head is
 * too wasteful.
 * You lose the ability to access the tail in O(1).
 */
//HASH LIST
struct hlist_head {
        struct hlist_node *first;
};


struct hlist_node {
        struct hlist_node *next, **pprev;
};


#define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
static inline void INIT_HLIST_NODE(struct hlist_node *h)
{
h->next = NULL;
h->pprev = NULL;
}


static inline int hlist_unhashed(const struct hlist_node *h)
{
return !h->pprev;
}


static inline int hlist_empty(const struct hlist_head *h)
{
return !h->first;
}


static inline void __hlist_del(struct hlist_node *n)
{
struct hlist_node *next = n->next;
struct hlist_node **pprev = n->pprev;
*pprev = next;
if (next)
next->pprev = pprev;
}


static inline void hlist_del(struct hlist_node *n)
{
__hlist_del(n);
n->next = LIST_POISON1;
n->pprev = LIST_POISON2;
}


static inline void hlist_del_init(struct hlist_node *n)
{
if (!hlist_unhashed(n)) {
__hlist_del(n);
INIT_HLIST_NODE(n);
}
}


static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
struct hlist_node *first = h->first;
n->next = first;
if (first)
first->pprev = &n->next;
h->first = n;
n->pprev = &h->first;
}


/* next must be != NULL */
static inline void hlist_add_before(struct hlist_node *n,
struct hlist_node *next)
{
n->pprev = next->pprev;
n->next = next;
next->pprev = &n->next;
*(n->pprev) = n;
}


static inline void hlist_add_after(struct hlist_node *n,
struct hlist_node *next)
{
next->next = n->next;
n->next = next;
next->pprev = &n->next;


if(next->next)
next->next->pprev  = &next->next;
}


/* after that we'll appear to be on some hlist and hlist_del will work */
static inline void hlist_add_fake(struct hlist_node *n)
{
n->pprev = &n->next;
}


/*
 * Move a list from one list head to another. Fixup the pprev
 * reference of the first entry if it exists.
 */
static inline void hlist_move_list(struct hlist_head *old,
  struct hlist_head *new)
{
new->first = old->first;
if (new->first)
new->first->pprev = &new->first;
old->first = NULL;
}


#define hlist_entry(ptr, type, member) container_of(ptr,type,member)


#define hlist_for_each(pos, head) \
for (pos = (head)->first; pos ; pos = pos->next)


#define hlist_for_each_safe(pos, n, head) \
for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
    pos = n)


/**
 * hlist_for_each_entry - iterate over list of given type
 * @tpos: the type * to use as a loop cursor.
 * @pos: the &struct hlist_node to use as a loop cursor.
 * @head : the head for your list.
 * @member: the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry(tpos, pos, head, member) \
for (pos = (head)->first; \
    pos &&  \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
    pos = pos->next)


/**
 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
 * @tpos: the type * to use as a loop cursor.
 * @pos: the &struct hlist_node to use as a loop cursor.
 * @member: the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_continue(tpos, pos, member) \
for (pos = (pos)->next; \
    pos &&  \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
    pos = pos->next)


/**
 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
 * @tpos: the type * to use as a loop cursor.
 * @pos: the &struct hlist_node to use as a loop cursor.
 * @member: the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_from(tpos, pos, member) \
for (; pos &&  \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
    pos = pos->next)


/**
 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @tpos: the type * to use as a loop cursor.
 * @pos: the &struct hlist_node to use as a loop cursor.
 * @n: another &struct hlist_node to use as temporary storage
 * @head : the head for your list.
 * @member: the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_safe(tpos, pos, n, head, member)  \
for (pos = (head)->first; \
    pos && ({ n = pos->next; 1; }) &&  \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
    pos = n)


#ifdef __cplusplus
}
#endif




#endif

© 著作权归作者所有

韩工
粉丝 1
博文 19
码字总数 8060
作品 0
朝阳
技术主管
私信 提问
加载中

评论(2)

韩工
韩工 博主
c 中使用list , std::list<>属于c++.
子达如何
子达如何
和std::list<> 的区别是什么?
页面的引用计数和get_user_pages

(本文基于2.6.1代码,参考2.6.17代码)在linux内核中,懒惰的方式已经成了它的一种性格,几乎所有的资源都是用引用计数来管理的,只有到没有实体使用资源的时候也就是其引用计数为0的时候,...

晨曦之光
2012/04/10
580
0
kexec--快速重启linux

linux几乎可以运行任何可以运行的东西,这好像是废话。其实这句话的意思是它可以将任何东西作为可以执行的映像来执行,内核既然也是一种elf映像,那么它当然是一种可执行的实体了。 linux内核...

晨曦之光
2012/04/10
346
0
简易分析myicq的内存池模型

myicq 1.0中实现了一个内存池的模型,可以自动分配和回收对象内存。下面看下其实现方式。 首先内存池使用了双向链表来链接的,链表的实现也就是linux中常见的list_head形式,不过是其自己实现...

长平狐
2013/01/11
121
0
从著名的list_head看linux内核中OO

如果有人问我最欣赏linux的什么,我会毫不犹豫地回答:list_head。这个小小的结构向世人说明了用c语言写成的linux内核也在实现着OO,下面我就具体来说一下下。先看list_head struct list_hea...

晨曦之光
2012/04/10
569
0
ubuntu 安装 broadcom 无线网卡 --新版本的ubuntu 12.04,13 已...

/* *2014/1/22 新增 * 建议安装最新版本的系统, *http://my.oschina.net/startphp/blog/138382 查看一下硬件是否支持 * 不行就用USB 的外置的吧 */ 方便阅读 文章链接 问题 解决之道 解决链...

oiio
2013/01/27
3K
7

没有更多内容

加载失败,请刷新页面

加载更多

web前端入门到实战:图解原生dialog标签(非常详细)

在html5中,新增了很多语义化的标签。如footer、header之类的,今天的主角是dialog标签 顾名思义,就是用来定义对话框的。目前只有Chrome和Safari支持该标签,所以用的不多,不过确实挺好用的...

梦想编程
22分钟前
3
0
一些php常用函数积累

本文链接<?php// id: ecffe70d3af54df9bad97b61918ace7d global $ct_path, $ct_log_path;$log_path = "test_php.txt";// 是否先log到buffer,再通过CT_flush()一次性写入文件$......

一字见心
23分钟前
3
0
IntelliJ idea中 注释代码折叠

visual studio中有#region 可以折叠代码,IntelliJ idea 中也有类似功能 //region 描述代码//endregion

format
23分钟前
4
0
oracle表中更改主键

一、数据表有主键但无主键约束名 先删除之前的主键,后添加主键 ,执行SQL: a. alter table 表名 drop primary key; b. alter table 表名 add primary key(想要更改的字段名称); 二、数据表...

_Somuns
25分钟前
3
0
jQuery AJAX提交表单

我有一个名称为orderproductForm的表单,输入的数量不确定。 我想做某种jQuery.get或ajax或类似的事情,它将通过Ajax调用页面,并发送所有形式为orderproductForm的输入。 我想一种方法是做类...

技术盛宴
30分钟前
2
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部