文档章节

Elasticsearch学习(七):Elasticsearch分析

howsweet
 howsweet
发布于 2017/08/17 16:18
字数 1486
阅读 37
收藏 1

一、分析

1. 分析(analysis)

  • 首先,标记化一个文本块为适用于倒排索引单独的词(term)
  • 然后标准化这些词为标准形式,提高它们的“可搜索性”或“查全率” 分析是由分析器(analyzer)完成的。

2. 分析器(analyzer)

  • 字符过滤器(character filter) 过滤处理字符串(比如去掉多余的空格之类的),让字符串在被分词前变得更加“整洁”,一个分析器可能包含零到多个字符过滤器。
  • 分词器(tokenizer) 字符串被标记化成独立的词(比如按空格划分成一个个单词),一个分析器必须包含一个分词器。
  • 标记过滤器(token filters) 所有的词经过标记过滤,标记过滤器可能修改,添加或删除标记。

只有字段是全文字段(full-text fields)的时候分析器才会被使用,当字段是一个确切的值(exact value)时,不会对该字段做分析。

  • 全文字段:类似于string、text
  • 确切值:类似于数值、日期

二、自定义分析器

1. char_filter(字符过滤器)

  • html_strip(html标签过滤) 参数:
    • escaped_tags不应该从原始文本中删除的HTML标签数组
  • mapping(自定义映射过滤) 参数:
    • mappings一个映射数组,每个元素的格式为key => value
    • mappings_path一个以UTF-8编码的文件的绝对路径或者是相对于config目录的路径,文件每一行都是一个格式为key => value映射
  • pattern_replace(使用正则表达式来匹配字符并使用指定的字符串替换) 参数:

2. tokenizer(分词器)

这里只列出常用的几个,更多分词器请查阅官方文档

  • standard(标准分词,默认使用的分词。根据Unicode Consortium的定义的单词边界来切分文本,然后去掉大部分标点符号对于文本分析,所以对于任何语言都是最佳选择) 参数:
    • max_token_length最大标记长度。如果一个标记超过这个长度,就会被分割。默认值为255
  • letter(遇到不是字母的字符就分割) 参数:无
  • lowercase(在letter基础上把所分词都转为小写) 参数:无
  • whitespace(以空格分词) 参数:无
  • keyword(相当于不分词,接收啥输出啥) 参数:
    • buffer_size缓冲区大小。默认为256。缓冲区将以这种大小增长,直到所有文本被消耗。建议不要改变这个设置。

3. filter(标记过滤器)

由于标记过滤器太多,这里就不一一介绍了,请查阅官方文档

4. 自定义分析器

newindex PUT

{
  "settings": {
    "analysis": {
      "char_filter": {
        "my_char_filter": {
          "type": "mapping",
          "mappings": [
            "&=>and",
            ":)=>happy",
            ":(=>sad"
          ]
        }
      },
      "tokenizer": {
        "my_tokenizer": {
          "type": "standard",
          "max_token_length": 5
        }
      },
      "filter": {
        "my_filter": {
          "type": "stop",
          "stopwords": [
            "the",
            "a"
          ]
        }
      },
      "analyzer": {
        "my_analyzer": {
          "type": "custom",
          "char_filter": [
            "html_strip",
            "my_char_filter"
          ],
          "tokenizer": "my_tokenizer",
          "filter": [
            "lowercase",
            "my_filter"
          ]
        }
      }
    }
  }
}

然后用自定义分析器分析一段字符串:

newindex/_analyze POST

{
  "analyzer": "my_analyzer",
  "text": "<span>If you are :(, I will be :).</span> The people & a banana",
  "explain": true
}

可以看到分析过程:

{
  "detail": {
    "custom_analyzer": true,
    "charfilters": [
      {
        "name": "html_strip",
        "filtered_text": [
          "if you are :(, I will be :). the people & a banana"
        ]
      },
      {
        "name": "my_char_filter",
        "filtered_text": [
          "if you are sad, I will be happy. the people and a banana"
        ]
      }
    ],
    "tokenizer": {
      "name": "my_tokenizer",
      "tokens": [
        {
          "token": "if",
          "start_offset": 6,
          "end_offset": 8,
          "type": "<ALPHANUM>",
          "position": 0,
          "bytes": "[69 66]",
          "positionLength": 1
        },
        {
          "token": "you",
          "start_offset": 9,
          "end_offset": 12,
          "type": "<ALPHANUM>",
          "position": 1,
          "bytes": "[79 6f 75]",
          "positionLength": 1
        },
        {
          "token": "are",
          "start_offset": 13,
          "end_offset": 16,
          "type": "<ALPHANUM>",
          "position": 2,
          "bytes": "[61 72 65]",
          "positionLength": 1
        },
        {
          "token": "sad",
          "start_offset": 17,
          "end_offset": 19,
          "type": "<ALPHANUM>",
          "position": 3,
          "bytes": "[73 61 64]",
          "positionLength": 1
        },
        {
          "token": "I",
          "start_offset": 21,
          "end_offset": 22,
          "type": "<ALPHANUM>",
          "position": 4,
          "bytes": "[49]",
          "positionLength": 1
        },
        {
          "token": "will",
          "start_offset": 23,
          "end_offset": 27,
          "type": "<ALPHANUM>",
          "position": 5,
          "bytes": "[77 69 6c 6c]",
          "positionLength": 1
        },
        {
          "token": "be",
          "start_offset": 28,
          "end_offset": 30,
          "type": "<ALPHANUM>",
          "position": 6,
          "bytes": "[62 65]",
          "positionLength": 1
        },
        {
          "token": "happy",
          "start_offset": 31,
          "end_offset": 33,
          "type": "<ALPHANUM>",
          "position": 7,
          "bytes": "[68 61 70 70 79]",
          "positionLength": 1
        },
        {
          "token": "the",
          "start_offset": 42,
          "end_offset": 45,
          "type": "<ALPHANUM>",
          "position": 8,
          "bytes": "[74 68 65]",
          "positionLength": 1
        },
        {
          "token": "peopl",
          "start_offset": 46,
          "end_offset": 51,
          "type": "<ALPHANUM>",
          "position": 9,
          "bytes": "[70 65 6f 70 6c]",
          "positionLength": 1
        },
        {
          "token": "e",
          "start_offset": 51,
          "end_offset": 52,
          "type": "<ALPHANUM>",
          "position": 10,
          "bytes": "[65]",
          "positionLength": 1
        },
        {
          "token": "and",
          "start_offset": 53,
          "end_offset": 54,
          "type": "<ALPHANUM>",
          "position": 11,
          "bytes": "[61 6e 64]",
          "positionLength": 1
        },
        {
          "token": "a",
          "start_offset": 55,
          "end_offset": 56,
          "type": "<ALPHANUM>",
          "position": 12,
          "bytes": "[61]",
          "positionLength": 1
        },
        {
          "token": "banan",
          "start_offset": 57,
          "end_offset": 62,
          "type": "<ALPHANUM>",
          "position": 13,
          "bytes": "[62 61 6e 61 6e]",
          "positionLength": 1
        },
        {
          "token": "a",
          "start_offset": 62,
          "end_offset": 63,
          "type": "<ALPHANUM>",
          "position": 14,
          "bytes": "[61]",
          "positionLength": 1
        }
      ]
    },
    "tokenfilters": [
      {
        "name": "lowercase",
        "tokens": [
          {
            "token": "if",
            "start_offset": 6,
            "end_offset": 8,
            "type": "<ALPHANUM>",
            "position": 0,
            "bytes": "[69 66]",
            "positionLength": 1
          },
          {
            "token": "you",
            "start_offset": 9,
            "end_offset": 12,
            "type": "<ALPHANUM>",
            "position": 1,
            "bytes": "[79 6f 75]",
            "positionLength": 1
          },
          {
            "token": "are",
            "start_offset": 13,
            "end_offset": 16,
            "type": "<ALPHANUM>",
            "position": 2,
            "bytes": "[61 72 65]",
            "positionLength": 1
          },
          {
            "token": "sad",
            "start_offset": 17,
            "end_offset": 19,
            "type": "<ALPHANUM>",
            "position": 3,
            "bytes": "[73 61 64]",
            "positionLength": 1
          },
          {
            "token": "i",
            "start_offset": 21,
            "end_offset": 22,
            "type": "<ALPHANUM>",
            "position": 4,
            "bytes": "[69]",
            "positionLength": 1
          },
          {
            "token": "will",
            "start_offset": 23,
            "end_offset": 27,
            "type": "<ALPHANUM>",
            "position": 5,
            "bytes": "[77 69 6c 6c]",
            "positionLength": 1
          },
          {
            "token": "be",
            "start_offset": 28,
            "end_offset": 30,
            "type": "<ALPHANUM>",
            "position": 6,
            "bytes": "[62 65]",
            "positionLength": 1
          },
          {
            "token": "happy",
            "start_offset": 31,
            "end_offset": 33,
            "type": "<ALPHANUM>",
            "position": 7,
            "bytes": "[68 61 70 70 79]",
            "positionLength": 1
          },
          {
            "token": "the",
            "start_offset": 42,
            "end_offset": 45,
            "type": "<ALPHANUM>",
            "position": 8,
            "bytes": "[74 68 65]",
            "positionLength": 1
          },
          {
            "token": "peopl",
            "start_offset": 46,
            "end_offset": 51,
            "type": "<ALPHANUM>",
            "position": 9,
            "bytes": "[70 65 6f 70 6c]",
            "positionLength": 1
          },
          {
            "token": "e",
            "start_offset": 51,
            "end_offset": 52,
            "type": "<ALPHANUM>",
            "position": 10,
            "bytes": "[65]",
            "positionLength": 1
          },
          {
            "token": "and",
            "start_offset": 53,
            "end_offset": 54,
            "type": "<ALPHANUM>",
            "position": 11,
            "bytes": "[61 6e 64]",
            "positionLength": 1
          },
          {
            "token": "a",
            "start_offset": 55,
            "end_offset": 56,
            "type": "<ALPHANUM>",
            "position": 12,
            "bytes": "[61]",
            "positionLength": 1
          },
          {
            "token": "banan",
            "start_offset": 57,
            "end_offset": 62,
            "type": "<ALPHANUM>",
            "position": 13,
            "bytes": "[62 61 6e 61 6e]",
            "positionLength": 1
          },
          {
            "token": "a",
            "start_offset": 62,
            "end_offset": 63,
            "type": "<ALPHANUM>",
            "position": 14,
            "bytes": "[61]",
            "positionLength": 1
          }
        ]
      },
      {
        "name": "my_filter",
        "tokens": [
          {
            "token": "if",
            "start_offset": 6,
            "end_offset": 8,
            "type": "<ALPHANUM>",
            "position": 0,
            "bytes": "[69 66]",
            "positionLength": 1
          },
          {
            "token": "you",
            "start_offset": 9,
            "end_offset": 12,
            "type": "<ALPHANUM>",
            "position": 1,
            "bytes": "[79 6f 75]",
            "positionLength": 1
          },
          {
            "token": "are",
            "start_offset": 13,
            "end_offset": 16,
            "type": "<ALPHANUM>",
            "position": 2,
            "bytes": "[61 72 65]",
            "positionLength": 1
          },
          {
            "token": "sad",
            "start_offset": 17,
            "end_offset": 19,
            "type": "<ALPHANUM>",
            "position": 3,
            "bytes": "[73 61 64]",
            "positionLength": 1
          },
          {
            "token": "i",
            "start_offset": 21,
            "end_offset": 22,
            "type": "<ALPHANUM>",
            "position": 4,
            "bytes": "[69]",
            "positionLength": 1
          },
          {
            "token": "will",
            "start_offset": 23,
            "end_offset": 27,
            "type": "<ALPHANUM>",
            "position": 5,
            "bytes": "[77 69 6c 6c]",
            "positionLength": 1
          },
          {
            "token": "be",
            "start_offset": 28,
            "end_offset": 30,
            "type": "<ALPHANUM>",
            "position": 6,
            "bytes": "[62 65]",
            "positionLength": 1
          },
          {
            "token": "happy",
            "start_offset": 31,
            "end_offset": 33,
            "type": "<ALPHANUM>",
            "position": 7,
            "bytes": "[68 61 70 70 79]",
            "positionLength": 1
          },
          {
            "token": "peopl",
            "start_offset": 46,
            "end_offset": 51,
            "type": "<ALPHANUM>",
            "position": 9,
            "bytes": "[70 65 6f 70 6c]",
            "positionLength": 1
          },
          {
            "token": "e",
            "start_offset": 51,
            "end_offset": 52,
            "type": "<ALPHANUM>",
            "position": 10,
            "bytes": "[65]",
            "positionLength": 1
          },
          {
            "token": "and",
            "start_offset": 53,
            "end_offset": 54,
            "type": "<ALPHANUM>",
            "position": 11,
            "bytes": "[61 6e 64]",
            "positionLength": 1
          },
          {
            "token": "banan",
            "start_offset": 57,
            "end_offset": 62,
            "type": "<ALPHANUM>",
            "position": 13,
            "bytes": "[62 61 6e 61 6e]",
            "positionLength": 1
          }
        ]
      }
    ]
  }
}

© 著作权归作者所有

共有 人打赏支持
howsweet
粉丝 4
博文 7
码字总数 6036
作品 0
济南
程序员
当ES赶超Redis,这份ES进修攻略不容错过!

从4月DB-Engines最新发布的全球数据库排名中,我们赫然发现ElasticSearch逆袭超越了Redis,从原先的第9名上升至第8名,而Redis则落后一名,排在了其后。 事实上,这场逆袭并不算太让人意外。...

DBAplus社群
04/15
0
0
Elasticsearch中文分词研究

一、ES分析器简介 ES是一个实时搜索与数据分析引擎,为了完成搜索功能,必须对原始数据进行分析、拆解,以建立索引,从而实现搜索功能; ES对数据分析、拆解过程如下: 首先,将一块文本分成...

zhaipengfei1231
04/18
0
0
初探 ELK - 每天5分钟玩转 Docker 容器技术(89)

在开源的日志管理方案中,最出名的莫过于 ELK 了。ELK 是三个软件的合称:Elasticsearch、Logstash、Kibana。 Elasticsearch 一个近乎实时查询的全文搜索引擎。Elasticsearch 的设计目标就是...

CloudMAN
2017/11/03
0
0
Centos6搭建elk系统,监控IIS日志

**所需程序: 服务器端:java、elasticsearch、kikbana 客 户 端:IIS、logstash** 一、服务器端(192.168.10.46)操作: 先建立一个ELK专门的目录: [root@Cent65 ~]mkdir /elk/ 上传到elk...

D杀手D
04/24
0
0
快速上手 Elasticsearch 的几个建议

相信不少同学都听说过 Elasticsearch,作为目前最流行的搜索引擎实现方案,越来越多的公司在自己的架构中引入,而其应用场景也从搜索引擎扩展到了日志存储分析、大数据分析领域,本文尝试给初...

rockybean
05/21
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

Linux下如何查看版本信息

Linux下如何查看版本信息, 包括位数、版本信息以及CPU内核信息、CPU具体型号等等,整个CPU信息一目了然。  1、# uname -a (Linux查看版本当前操作系统内核信息)   Linux localhost.l...

15834278076
29分钟前
0
0
单点登录 SSO 的实现原理

单点登录SSO(Single Sign On)说得简单点就是在一个多系统共存的环境下,用户在一处登录后,就不用在其他系统中登录,也就是用户的一次登录能得到其他所有系统的信任。 单点登录在大型网站里...

明理萝
29分钟前
1
1
虚拟机性能监控工具

前言 JVM调优流行这么一句话“无监控不调优”,因为如果没有监控,就不知道虚拟机的运行状况。更谈不上调优了,所以,学习和了解Java 虚拟机的监控工具很有必要。 概述 在Java虚拟机中经常用...

kukudeku
39分钟前
1
0
一行搞定electron和jquery冲突,electron和jquery最简单和完美的兼容方法

electron和jquery的常见报错: Uncaught ReferenceError: $ is not defined 解决方法:在jquery最末端加上这样一行判断即可. <script src="https://code.jquery.com/jquery-2.2.0.min.js"></s......

xiaogg
49分钟前
1
0
GC和内存管理

1、垃圾回收器需要关注的内容 ava运行时内存区域的各个部分中,程序计数器、虚拟机栈、本地方法栈这三个区域的生命周期和线程相关,栈中的栈帧随着方法的进入和退出执行着进栈和出栈,每一个...

京一
55分钟前
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部