文档章节

Linux高端内存映射

hoolev
 hoolev
发布于 2015/04/16 17:13
字数 1715
阅读 389
收藏 22
点赞 0
评论 0

概述

在32位的系统上,内核占有从第3GB~第4GB的线性地址空间,共1GB大小,内核将其中的前896MB与物理内存的0~896MB进行直接映射,即线性映射,将剩余的128M线性地址空间作为访问高于896M的内存的一个窗口。

引入高端内存映射这样一个概念的主要原因就是我们所安装的内存大于1G时,内核的1G线性地址空间无法建立一个完全的直接映射来触及整个物理内存空间,而对于80x86开启PAE的情况下,允许的最大物理内存可达到64G,因此内核将自己的最后128M的线性地址空间腾出来,用以完成对高端内存的暂时性映射。

而在64位的系统上就不存在这样的问题了,因为可用的线性地址空间远大于可安装的内存。下图描述了内核1GB线性地址空间是如何划分的。

其中可以用来完成上述映射目的的区域为vmalloc area,Persistent kernel mappings区域和固定映射线性地址空间中的FIX_KMAP区域,这三个区域对应的映射机制分别为非连续内存分配永久内核映射临时内核映射

永久内核映射

在内核初始化页表管理机制时,专门用pkmap_page_table这个变量保存了PKMAP_BASE对应的页表项的地址,由pkmap_page_table来维护永久内核映射区的页表项的映射,页表项总数为LAST_PKMAP个。

这里的永久并不是指调用kmap()建立的映射关系会一直持续下去无法解除,而是指在调用kunmap()解除映射之间这种映射会一直存在,这是相对于临时内核映射机制而言的。

需要注意一点的是,当永久内核映射区没有空闲的页表项可供映射时,请求映射的进程会被阻塞,因此永久内核映射请求不能发生在中断和可延迟函数中。

临时内核映射

临时内核映射和永久内核映射相比,其最大的特点就是不会阻塞请求映射页框的进程,因此临时内核映射请求可以发生在中断和可延迟函数中。系统中的每个CPU都有自己的临时内核映射窗口,根据不同的需求,选择不同的窗口来创建映射。

临时内核映射的实现也比永久内核映射要简单,当一个进程申请在某个窗口创建映射,即使这个窗口已经在之前就建立了映射,新的映射也会建立并且覆盖之前的映射,所以说这种映射机制是临时的,并且不会阻塞当前进程。

非连续内存分配

非连续内存分配是指将物理地址不连续的页框映射到线性地址连续的线性地址空间,主要应用于大容量的内存分配。采用这种方式分配内存的主要优点是避免了外部碎片,而缺点是必须打乱内核页表,而且访问速度较连续分配的物理页框慢。

非连续内存分配的线性地址空间是从VMALLOC_START到VMALLOC_END,共128M,每当内核要用vmalloc类的函数进行非连续内存分配,就会申请一个vm_struct结构来描述对应的vmalloc区,两个vmalloc区之间的间隔至少为一个页框的大小,即PAGE_SIZE。下图是非连续内存分配区的示意图

总结

至此,已将高端内存所有区域的映射介绍完毕。在我看来,内核的线性地址空间都可以视为一种资源,因为必须通过线性地址来访问页表,进一步通过页表来访问相应的物理内存。

由于内核的线性地址空间有限,因此采取上面介绍的三种方式来映射高端内存。需要明确的一点就是,线性地址与页表之间的映射是固定不可变的,而页表到具体的物理页框之间的映射是可以改变的,内核正是利用页表到物理页框之间的映射的可变性来为高端内存建立“临时”的映射,这三种机制本质上都回归到这点。

永久内核映射和临时内核映射,都由内核指定了需要进行映射的页面,也就是说指定了页描述符(页描述符和物理页框之间的关系是固定不可变的),在永久内核映射中,内核只需要在永久内核映射区找到空闲的,也就是未被映射的线性地址对应的页表项,然后将其分配给page即可,若找不到则将阻塞申请建立映射的进程;而临时内核映射更直接,连进行映射的线性地址窗口都是固定的,若是其已经分配给了某个页框,则直接抢过来用,因此之前的映射就被覆盖了,体现出了临时性。

非连续内存分配,内核不用指定具体的page,只需指定要申请的内存大小,内核将在非连续内存分配区找到一块相应大小虚拟地址空间,然后再由伙伴系统分配页框,还要通过slab分配器为一些数据结构分配内存,最后再用同样的方式(设置PTE表项)来建立映射,其中涉及到伙伴系统和slab分配的部分都没做具体分析,在后面的文章中再着重分析这些部分。

常见问题

  • 用户空间(进程)是否有高端内存概念?

用户进程没有高端内存概念。只有在内核空间才存在高端内存。用户进程最多只可以访问3G物理内存,而内核进程可以访问所有物理内存。

  • 用户进程能访问多少物理内存?内核代码能访问多少物理内存?

32位系统用户进程最大可以访问3GB,内核代码可以访问所有物理内存。 64位系统用户进程最大可以访问超过512GB,内核代码可以访问所有物理内存。

PS 本文是这一系列文章的书摘:

本文转载自:http://blog.csdn.net/vanbreaker/article/details/7579941

共有 人打赏支持
hoolev
粉丝 13
博文 26
码字总数 12445
作品 0
广州
高级程序员
深入理解Linux内存管理-之-目录导航

转自:https://blog.csdn.net/gatieme/article/details/52384965 1 内存描述 2 页表管理 3 初始化内存管理

zwfgogo
04/20
0
0
关于linux永久内核映射思想的阐述

进程是运行在虚拟空间,所有的内存请求返回的都是虚拟地址。实际上在我自己的理解来看,寻址的过程就是在寻找页表。在linux中,对于32位系统,不论是开启还是未开启PAE都是把前896M的页框映射...

梦中人在做梦
2015/08/01
0
0
Linux驱动虚拟地址和物理地址的映射

一般情况下,Linux系统中,进程的4GB内存空间被划分成为两个部分——用户空间和内核空间,大小分别为0~3G,3~4G。 用户进程通常情况下,只能访问用户空间的虚拟地址,不能访问到内核空间。 ...

baidu_37503452
05/23
0
0
每天理解一点Linux内核之高端地址映射

上一篇介绍了0.12版本内核地址映射线性地址和物理地址是通过减去0xC0000000互相转化的,但是这里存在一个问题的,那就是内核只能读取1G的内存,即便物理内存大于4G空间,这样不就浪费了吗?那...

u010278923
04/11
0
0
Linux内核学习笔记(二)内存管理

综述 本文首先介绍和内存管理相关的一些概念如page,zone,然后介绍多种获得内存的方式,最后介绍Linux的slab层(slab分配器)。 页(page) 页是Linux内核进行内存管理的基本单元。MMU和虚拟...

damontive
04/24
0
0
Linux内存管理-高端内存

上一周一直在关注linux内存中3:1(3G:1G)的关系,并没有考虑到如果我的物理内存大于1G,那么内核空间1G的虚拟空间如何映射整个物理内存呢?以及内核是如何管理这大于1G的物理内存的。 下面...

长平狐
2012/09/03
154
0
Linux内存管理(x86-32位系统)

linux内存的管理主要分为两部分,地址管理和存储设备管理。下面针对这两部分介绍一下我对内存管理的理解。 硬件地址的基本概念 DRAM域地址:是DRAM控制器所能访问的地址空间集合。 PCI总线域...

hoolev
2015/04/14
0
0
Linux 虚拟内存和物理内存的理解

首先,让我们看下虚拟内存: 第一层理解 1. 每个进程都有自己独立的4G内存空间,各个进程的内存空间具有类似的结构 2. 一个新进程建立的时候,将会建立起自己的内存空间,此进程的数据,代码...

zhengyijie
2015/12/26
374
1
Android安全模型之Linux安全模型

Android系统以Linux内核为基础,理解Android的安全设计首先要理清Linux安全模型的主要概念与元素,包括用户与权限,进程与内存空间等。 用户与权限 Linux安全模型的基础是用户与用户组。Lin...

柳哥
2014/11/30
0
0
Linux进程和线程间IPC机制

Linux进程间IPC 1.管道(Pipe)及有名管道(named pipe): 1、管道是半双工的,要实线读写需建立两根管道; 2、匿名管道用于父子进程或者兄弟进程之间(如forkexec创建的进程),命名管道允许没...

dodonei
04/16
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

【面试题】盲人坐飞机

有100位乘客乘坐飞机,其中有一位是盲人,每位乘客都按自己的座位号就坐。由于盲人看不见自己的座位号,所以他可能会坐错位置,而自己的座位被占的乘客会随便找个座位就坐。问所有乘客都坐对...

garkey
今天
0
0
谈谈神秘的ES6——(二)ES6的变量

谈谈神秘的ES6——(二)ES6的变量 我们在《零基础入门JavaScript》的时候就说过,在ES5里,变量是有弊端的,我们先来回顾一下。 首先,在ES5中,我们所有的变量都是通过关键字var来定义的。...

JandenMa
今天
1
0
arts-week1

Algorithm 594. Longest Harmonious Subsequence - LeetCode 274. H-Index - LeetCode 219. Contains Duplicate II - LeetCode 217. Contains Duplicate - LeetCode 438. Find All Anagrams ......

yysue
今天
0
0
NNS拍卖合约

前言 关于NNS的介绍,这里就不多做描述,相关的信息可以查看NNS的白皮书http://doc.neons.name/zh_CN/latest/nns_background.html。 首先nns中使用的竞价货币是sgas,关于sgas介绍可以戳htt...

红烧飞鱼
今天
1
0
Java IO类库之管道流PipeInputStream与PipeOutputStream

一、java管道流介绍 在java多线程通信中管道通信是一种重要的通信方式,在java中我们通过配套使用管道输出流PipedOutputStream和管道输入流PipedInputStream完成线程间通信。多线程管道通信的...

老韭菜
今天
0
0
用Python绘制红楼梦词云图,竟然发现了这个!

Python在数据分析中越来越受欢迎,已经达到了统计学家对R的喜爱程度,Python的拥护者们当然不会落后于R,开发了一个个好玩的数据分析工具,下面我们来看看如何使用Python,来读红楼梦,绘制小...

猫咪编程
今天
1
0
Java中 发出请求获取别人的数据(阿里云 查询IP归属地)

1.效果 调用阿里云的接口 去定位IP地址 2. 代码 /** * 1. Java中远程调用方法 * http://localhost:8080/mavenssm20180519/invokingUrl.action * @Title: invokingUrl * @Description: * @ret......

Lucky_Me
今天
1
0
protobuf学习笔记

相关文档 Protocol buffers(protobuf)入门简介及性能分析 Protobuf学习 - 入门

OSC_fly
昨天
0
0
Mybaties入门介绍

Mybaties和Hibernate是我们在Java开发中应用的比较多的两个ORM框架。当然,目前Mybaties正在慢慢取代Hibernate,这是因为相比较Hibernate而言Mybaties性能更好,响应更快,更加灵活。我们在开...

王子城
昨天
2
0
编程学习笔记之python深入之装饰器案例及说明文档[图]

编程学习笔记之python深入之装饰器案例及说明文档[图] 装饰器即在不对一个函数体进行任何修改,以及不改变整体的原本意思的情况下,增加函数功能的新函数,因为这个新函数对旧函数进行了装饰...

原创小博客
昨天
1
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部