文档章节

分布式实时日志分析解决方案ELK部署架构

FEINIK
 FEINIK
发布于 2017/11/27 22:19
字数 2153
阅读 7812
收藏 331

一、概述

ELK 已经成为目前最流行的集中式日志解决方案,它主要是由Beats、Logstash、Elasticsearch、Kibana等组件组成,来共同完成实时日志的收集,存储,展示等一站式的解决方案。本文将会介绍ELK常见的架构以及相关问题解决。

  1. Filebeat:Filebeat是一款轻量级,占用服务资源非常少的数据收集引擎,它是ELK家族的新成员,可以代替Logstash作为在应用服务器端的日志收集引擎,支持将收集到的数据输出到Kafka,Redis等队列。
  2. Logstash:数据收集引擎,相较于Filebeat比较重量级,但它集成了大量的插件,支持丰富的数据源收集,对收集的数据可以过滤,分析,格式化日志格式。
  3. Elasticsearch:分布式数据搜索引擎,基于Apache Lucene实现,可集群,提供数据的集中式存储,分析,以及强大的数据搜索和聚合功能。
  4. Kibana:数据的可视化平台,通过该web平台可以实时的查看 Elasticsearch 中的相关数据,并提供了丰富的图表统计功能。

二、ELK常见部署架构

2.1、Logstash作为日志收集器

这种架构是比较原始的部署架构,在各应用服务器端分别部署一个Logstash组件,作为日志收集器,然后将Logstash收集到的数据过滤、分析、格式化处理后发送至Elasticsearch存储,最后使用Kibana进行可视化展示,这种架构不足的是:Logstash比较耗服务器资源,所以会增加应用服务器端的负载压力。

2.2、Filebeat作为日志收集器

该架构与第一种架构唯一不同的是:应用端日志收集器换成了Filebeat,Filebeat轻量,占用服务器资源少,所以使用Filebeat作为应用服务器端的日志收集器,一般Filebeat会配合Logstash一起使用,这种部署方式也是目前最常用的架构。

2.3、引入缓存队列的部署架构

该架构在第二种架构的基础上引入了Kafka消息队列(还可以是其他消息队列),将Filebeat收集到的数据发送至Kafka,然后在通过Logstasth读取Kafka中的数据,这种架构主要是解决大数据量下的日志收集方案,使用缓存队列主要是解决数据安全与均衡Logstash与Elasticsearch负载压力。

2.4、以上三种架构的总结

第一种部署架构由于资源占用问题,现已很少使用,目前使用最多的是第二种部署架构,至于第三种部署架构个人觉得没有必要引入消息队列,除非有其他需求,因为在数据量较大的情况下,Filebeat 使用压力敏感协议向 Logstash 或 Elasticsearch 发送数据。如果 Logstash 正在繁忙地处理数据,它会告知 Filebeat 减慢读取速度。拥塞解决后,Filebeat 将恢复初始速度并继续发送数据。

三、问题及解决方案

问题:如何实现日志的多行合并功能?

系统应用中的日志一般都是以特定格式进行打印的,属于同一条日志的数据可能分多行进行打印,那么在使用ELK收集日志的时候就需要将属于同一条日志的多行数据进行合并。

解决方案:使用Filebeat或Logstash中的multiline多行合并插件来实现

在使用multiline多行合并插件的时候需要注意,不同的ELK部署架构可能multiline的使用方式也不同,如果是本文的第一种部署架构,那么multiline需要在Logstash中配置使用,如果是第二种部署架构,那么multiline需要在Filebeat中配置使用,无需再在Logstash中配置multiline。

1、multiline在Filebeat中的配置方式:

filebeat.prospectors:
    -
       paths:
          - /home/project/elk/logs/test.log
       input_type: log 
       multiline:
            pattern: '^\['
            negate: true
            match: after
output:
   logstash:
      hosts: ["localhost:5044"]
  • pattern:正则表达式
  • negate:默认为false,表示匹配pattern的行合并到上一行;true表示不匹配pattern的行合并到上一行
  • match:after表示合并到上一行的末尾,before表示合并到上一行的行首

如:

pattern: '\['
negate: true
match: after

该配置表示将不匹配pattern模式的行合并到上一行的末尾

2、multiline在Logstash中的配置方式

input {
  beats {
    port => 5044
  }
}

filter {
  multiline {
    pattern => "%{LOGLEVEL}\s*\]"
    negate => true
    what => "previous"
  }
}

output {
  elasticsearch {
    hosts => "localhost:9200"
  }
}

(1)Logstash中配置的what属性值为previous,相当于Filebeat中的after,Logstash中配置的what属性值为next,相当于Filebeat中的before。
(2)pattern => "%{LOGLEVEL}\s*\]" 中的LOGLEVEL是Logstash预制的正则匹配模式,预制的还有好多常用的正则匹配模式,详细请看:https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns

问题:如何将Kibana中显示日志的时间字段替换为日志信息中的时间?

默认情况下,我们在Kibana中查看的时间字段与日志信息中的时间不一致,因为默认的时间字段值是日志收集时的当前时间,所以需要将该字段的时间替换为日志信息中的时间。

解决方案:使用grok分词插件与date时间格式化插件来实现

在Logstash的配置文件的过滤器中配置grok分词插件与date时间格式化插件,如:

input {
  beats {
    port => 5044
  }
}

filter {
  multiline {
    pattern => "%{LOGLEVEL}\s*\]\[%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME}\]"
    negate => true
    what => "previous"
  }

  grok {
    match => [ "message" , "(?<customer_time>%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME})" ]
  }

  date {
        match => ["customer_time", "yyyyMMdd HH:mm:ss,SSS"] //格式化时间
        target => "@timestamp" //替换默认的时间字段
  }
}

output {
  elasticsearch {
    hosts => "localhost:9200"
  }
}

如要匹配的日志格式为:“[DEBUG][20170811 10:07:31,359][DefaultBeanDefinitionDocumentReader:106] Loading bean definitions”,解析出该日志的时间字段的方式有:

通过引入写好的表达式文件,如表达式文件为customer_patterns,内容为:
CUSTOMER_TIME %{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME}
注:内容格式为:[自定义表达式名称] [正则表达式]
然后logstash中就可以这样引用:

filter {
  grok {
      patterns_dir => ["./customer-patterms/mypatterns"] //引用表达式文件路径
      match => [ "message" , "%{CUSTOMER_TIME:customer_time}" ] //使用自定义的grok表达式
  }
}

以配置项的方式,规则为:(?<自定义表达式名称>正则匹配规则),如:

filter {
  grok {
    match => [ "message" , "(?<customer_time>%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME})" ]
  }
}

问题:如何在Kibana中通过选择不同的系统日志模块来查看数据

一般在Kibana中显示的日志数据混合了来自不同系统模块的数据,那么如何来选择或者过滤只查看指定的系统模块的日志数据?

解决方案:新增标识不同系统模块的字段或根据不同系统模块建ES索引

1、新增标识不同系统模块的字段,然后在Kibana中可以根据该字段来过滤查询不同模块的数据
这里以第二种部署架构讲解,在Filebeat中的配置内容为:

filebeat.prospectors:
    -
       paths:
          - /home/project/elk/logs/account.log
       input_type: log 
       multiline:
            pattern: '^\['
            negate: true
            match: after
       fields: //新增log_from字段
         log_from: account

    -
       paths:
          - /home/project/elk/logs/customer.log
       input_type: log 
       multiline:
            pattern: '^\['
            negate: true
            match: after
       fields:
         log_from: customer
output:
   logstash:
      hosts: ["localhost:5044"]

通过新增:log_from字段来标识不同的系统模块日志

2、根据不同的系统模块配置对应的ES索引,然后在Kibana中创建对应的索引模式匹配,即可在页面通过索引模式下拉框选择不同的系统模块数据。
这里以第二种部署架构讲解,分为两步:
① 在Filebeat中的配置内容为:

filebeat.prospectors:
    -
       paths:
          - /home/project/elk/logs/account.log
       input_type: log 
       multiline:
            pattern: '^\['
            negate: true
            match: after
       document_type: account

    -
       paths:
          - /home/project/elk/logs/customer.log
       input_type: log 
       multiline:
            pattern: '^\['
            negate: true
            match: after
       document_type: customer
output:
   logstash:
      hosts: ["localhost:5044"]

通过document_type来标识不同系统模块

② 修改Logstash中output的配置内容为:

output {
  elasticsearch {
    hosts => "localhost:9200"
    index => "%{type}"
  }
}

在output中增加index属性,%{type}表示按不同的document_type值建ES索引

四、总结

本文主要介绍了ELK实时日志分析的三种部署架构,以及不同架构所能解决的问题,这三种架构中第二种部署方式是时下最流行也是最常用的部署方式,最后介绍了ELK作在日志分析中的一些问题与解决方案,说在最后,ELK不仅仅可以用来作为分布式日志数据集中式查询和管理,还可以用来作为项目应用以及服务器资源监控等场景,更多内容请看官网。

 

 

© 著作权归作者所有

FEINIK
粉丝 225
博文 58
码字总数 55195
作品 0
广州
高级程序员
私信 提问
加载中

评论(6)

WilhelmGuo
WilhelmGuo

引用来自“王囧”的评论

使用redis的话需要规划好两遍的吞吐量,否则一旦在redis中堆积就比较坑,中间缓存层用kafka比redis要好些。
实际使用中遇到过es负载压力大-->logstash output到es的吞吐量降低-->消息在redis中堆积-->redis集群内存占满的情况

引用来自“FEINIK”的评论

是的,使用缓存队列的话要防止数据堆积问题,所以个人不建议使用队列,因为Filebeat 使用压力敏感协议向 Logstash 或 Elasticsearch 发送数据,当Logstash 或 Elasticsearch出现数据接收拥塞时会主动通知Filebeat放缓发送数据的速度。😄
beat写一个插件非常方便,几十行go代码就搞定了,我们已经丢掉了logstash
FEINIK
FEINIK 博主

引用来自“王囧”的评论

使用redis的话需要规划好两遍的吞吐量,否则一旦在redis中堆积就比较坑,中间缓存层用kafka比redis要好些。
实际使用中遇到过es负载压力大-->logstash output到es的吞吐量降低-->消息在redis中堆积-->redis集群内存占满的情况
是的,使用缓存队列的话要防止数据堆积问题,所以个人不建议使用队列,因为Filebeat 使用压力敏感协议向 Logstash 或 Elasticsearch 发送数据,当Logstash 或 Elasticsearch出现数据接收拥塞时会主动通知Filebeat放缓发送数据的速度。😄
王囧
王囧
使用redis的话需要规划好两遍的吞吐量,否则一旦在redis中堆积就比较坑,中间缓存层用kafka比redis要好些。
实际使用中遇到过es负载压力大-->logstash output到es的吞吐量降低-->消息在redis中堆积-->redis集群内存占满的情况
FEINIK
FEINIK 博主

引用来自“SamZhou”的评论

beat可以直连ES,如果数据源真的非常乱才需要加入Logstash,Logstash的filter功能是非常吃内存及CPU的
是的,beat可以直接连接ES,可是有些需求beat还是无法满足的,如分词处理,至于资源消耗的问题,Logstash可以单独部署在一台服务器不要与系统应用服务部署在一起即可!😄
SamZhou
SamZhou
beat可以直连ES,如果数据源真的非常乱才需要加入Logstash,Logstash的filter功能是非常吃内存及CPU的
tauruschen
tauruschen
写得不错
Kubernetes-基于EFK进行统一的日志管理

1、统一日志管理的整体方案 通过应用和系统日志可以了解Kubernetes集群内所发生的事情,对于调试问题和监视集群活动来说日志非常有用。对于大部分的应用来说,都会具有某种日志机制。因此,大...

店家小二
2018/12/14
0
0
使用ELK构建微服务的日志平台

1 概述 在微服务架构中,会部署众多的应用,其中有基础应用,比如:网关,服务发现等。同时还有大量的业务应用。所以,如何有效的收集它们的日志,并且方便查询,同时提供友好的可视化展示,...

Java大蜗牛
2018/08/18
0
0
Kubernetes基于EFK进行统一的日志管理方案

1、统一日志管理的整体方案 通过应用和系统日志可以了解Kubernetes集群内所发生的事情,对于调试问题和监视集群活动来说日志非常有用。对于大部分的应用来说,都会具有某种日志机制。因此,大...

店家小二
2018/12/17
0
0
Kubernetes-基于EFK进行统一的日志管理原理

EFK安装部署参考:https://blog.csdn.net/luanpeng825485697/article/details/83312662 1、统一日志管理的整体方案 通过应用和系统日志可以了解Kubernetes集群内所发生的事情,对于调试问题和...

数据架构师
2018/11/01
0
0
Java搜索引擎选择: Elasticsearch与Solr(转)

Elasticsearch简介 Elasticsearch是一个实时的分布式搜索和分析引擎。它可以帮助你用前所未有的速度去处理大规模数据。 它可以用于全文搜索,结构化搜索以及分析,当然你也可以将这三者进行组...

easonjim
2017/11/13
0
0

没有更多内容

加载失败,请刷新页面

加载更多

IT兄弟连 Java语法教程 编写Java源代码

现在我们来一步一步的编写第一个Java程序,鼎鼎大名的“HelloWorld”。 编写Java源代码 编写Java源代码可以使用任何无格式的文本编辑器,在Windows操作系统上可以使用记事本、Edit Plus等程序...

老码农的一亩三分地
13分钟前
2
0
JavaScript箭头函数中的this详解

前言 箭头函数极大地简化了this的取值规则。 普通函数与箭头函数 普通函数指的是用function定义的函数: var hello = function () {console.log("Hello, Fundebug!");} 箭头函数指的是用...

开元中国2015
24分钟前
2
0
ETL测试工具简介

ETL测试 ETL测试过程与其他测试过程类似,包括一些阶段。 确定业务需求 测试计划 设计测试用例和测试数据 测试执行和错误报告 总结报告 测试结束 ETL测试的类型 生产验证测试: 也称为表平衡...

python测试开发人工智能安全
36分钟前
1
0
OSChina 周四乱弹 —— 不能空腹吃早餐

Osc乱弹歌单(2019)请戳(这里) 【今日歌曲】 @for_ :#今日歌曲推荐# 很好听的钢琴曲,节奏简单,有一点伤感。分享Fabrizio Paterlini的单曲《Veloma》: 《Veloma》- Fabrizio Paterlini ...

小小编辑
今天
1K
13
探讨android更新UI的几种方法

作为IT新手,总以为只要有时间,有精力,什么东西都能做出来。这种念头我也有过,但很快就熄灭了,因为现实是残酷的,就算一开始的时间和精力非常充足,也会随着项目的推进而逐步消磨殆尽。我...

天王盖地虎626
今天
8
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部