文档章节

如何理解并正确使用MySql索引

FEINIK
 FEINIK
发布于 2017/07/10 22:19
字数 2448
阅读 7172
收藏 536

1、概述

索引是存储引擎用于快速查找记录的一种数据结构,通过合理的使用数据库索引可以大大提高系统的访问性能,接下来主要介绍在MySql数据库中索引类型,以及如何创建出更加合理且高效的索引技巧。

注:这里主要针对的是InnoDB存储引擎的B+Tree索引数据结构

                      

2、索引的优点

1、大大减轻了服务器需要扫描的数据量,从而提高了数据的检索速度

2、帮助服务器避免排序和临时表

3、可以将随机I/O变为顺序I/O

3、索引的创建

3.1、主键索引

ALTER TABLE 'table_name' ADD PRIMARY KEY 'index_name' ('column');

3.2、唯一索引

ALTER TABLE 'table_name' ADD UNIQUE 'index_name' ('column');

3.3、普通索引

ALTER TABLE 'table_name' ADD INDEX 'index_name' ('column');

3.4、全文索引

ALTER TABLE 'table_name' ADD FULLTEXT 'index_name' ('column');

3.5、组合索引

ALTER TABLE 'table_name' ADD INDEX 'index_name' ('column1', 'column2', ...);

4、B+Tree的索引规则

创建一个测试的用户表

DROP TABLE IF EXISTS user_test;
CREATE TABLE user_test(
	id int AUTO_INCREMENT PRIMARY KEY,
	user_name varchar(30) NOT NULL,
	sex bit(1) NOT NULL DEFAULT b'1',
	city varchar(50) NOT NULL,
	age int NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

创建一个组合索引: ALTER TABLE user_test ADD INDEX idx_user(user_name , city , age);

4.1、索引有效的查询

4.1.1、全值匹配

全值匹配指的是和索引中的所有列进行匹配,如:以上面创建的索引为例,在where条件后可同时查询(user_name,city,age)为条件的数据。

注:与where后查询条件的顺序无关,这里是很多同学容易误解的一个地方

SELECT * FROM user_test WHERE user_name = 'feinik' AND age = 26 AND city = '广州';

4.1.2、匹配最左前缀

匹配最左前缀是指优先匹配最左索引列,如:上面创建的索引可用于查询条件为:(user_name )、(user_name, city)、(user_name , city , age)

注:满足最左前缀查询条件的顺序与索引列的顺序无关,如:(city, user_name)、(age, city, user_name)

4.1.3、匹配列前缀

指匹配列值的开头部分,如:查询用户名以feinik开头的所有用户

SELECT * FROM user_test WHERE user_name LIKE 'feinik%';

4.1.4、匹配范围值

如:查询用户名以feinik开头的所有用户,这里使用了索引的第一列

SELECT * FROM user_test WHERE user_name LIKE 'feinik%';

4.2、索引的限制

1、where查询条件中不包含索引列中的最左索引列,则无法使用到索引查询,如:

SELECT * FROM user_test WHERE city = '广州';

SELECT * FROM user_test WHERE age= 26;

SELECT * FROM user_test WHERE city = '广州' AND age = '26';

2、即使where的查询条件是最左索引列,也无法使用索引查询用户名以feinik结尾的用户

SELECT * FROM user_test WHERE user_name like '%feinik';

3、如果where查询条件中有某个列的范围查询,则其右边的所有列都无法使用索引优化查询,如:

SELECT * FROM user_test WHERE user_name = 'feinik' AND city LIKE '广州%' AND age = 26;

5、高效的索引策略

5.1、索引列不能是表达式的一部分,也不能作为函数的参数,否则无法使用索引查询。

SELECT * FROM user_test WHERE user_name = concat(user_name, 'fei');

5.2、前缀索引

有时候需要索引很长的字符列,这会增加索引的存储空间以及降低索引的效率,一种策略是可以使用哈希索引,还有一种就是可以使用前缀索引,前缀索引是选择字符列的前n个字符作为索引,这样可以大大节约索引空间,从而提高索引效率。

5.2.1、前缀索引的选择性

前缀索引要选择足够长的前缀以保证高的选择性,同时又不能太长,我们可以通过以下方式来计算出合适的前缀索引的选择长度值:

(1)

SELECT COUNT(DISTINCT index_column)/COUNT(*) FROM table_name; -- index_column代表要添加前缀索引的列

注:通过以上方式来计算出前缀索引的选择性比值,比值越高说明索引的效率也就越高效。

(2)

SELECT

COUNT(DISTINCT LEFT(index_column,1))/COUNT(*),

COUNT(DISTINCT LEFT(index_column,2))/COUNT(*),

COUNT(DISTINCT LEFT(index_column,3))/COUNT(*)

...

FROM table_name;

注:通过以上语句逐步找到最接近于(1)中的前缀索引的选择性比值,那么就可以使用对应的字符截取长度来做前缀索引了

5.2.2、前缀索引的创建

ALTER TABLE table_name ADD INDEX index_name (index_column(length));

5.2.3、使用前缀索引的注意点

前缀索引是一种能使索引更小,更快的有效办法,但是MySql无法使用前缀索引做ORDER BY 和 GROUP BY以及使用前缀索引做覆盖扫描。

5.3、选择合适的索引列顺序

在组合索引的创建中索引列的顺序非常重要,正确的索引顺序依赖于使用该索引的查询方式,对于组合索引的索引顺序可以通过经验法则来帮助我们完成:将选择性最高的列放到索引最前列,该法则与前缀索引的选择性方法一致,但并不是说所有的组合索引的顺序都使用该法则就能确定,还需要根据具体的查询场景来确定具体的索引顺序。

5.4 聚集索引与非聚集索引

1、聚集索引

聚集索引决定数据在物理磁盘上的物理排序,一个表只能有一个聚集索引,如果定义了主键,那么InnoDB会通过主键来聚集数据,如果没有定义主键,InnoDB会选择一个唯一的非空索引代替,如果没有唯一的非空索引,InnoDB会隐式定义一个主键来作为聚集索引。

聚集索引可以很大程度的提高访问速度,因为聚集索引将索引和行数据保存在了同一个B-Tree中,所以找到了索引也就相应的找到了对应的行数据,但在使用聚集索引的时候需注意避免随机的聚集索引(一般指主键值不连续,且分布范围不均匀),如使用UUID来作为聚集索引性能会很差,因为UUID值的不连续会导致增加很多的索引碎片和随机I/O,最终导致查询的性能急剧下降。

2、非聚集索引

与聚集索引不同的是非聚集索引并不决定数据在磁盘上的物理排序,且在B-Tree中包含索引但不包含行数据,行数据只是通过保存在B-Tree中的索引对应的指针来指向行数据,如:上面在(user_name,city, age)上建立的索引就是非聚集索引。

5.5、覆盖索引

如果一个索引(如:组合索引)中包含所有要查询的字段的值,那么就称之为覆盖索引,如:

SELECT user_name, city, age FROM user_test WHERE user_name = 'feinik' AND age > 25;

因为要查询的字段(user_name, city, age)都包含在组合索引的索引列中,所以就使用了覆盖索引查询,查看是否使用了覆盖索引可以通过执行计划中的Extra中的值为Using index则证明使用了覆盖索引,覆盖索引可以极大的提高访问性能。

5.6、如何使用索引来排序

在排序操作中如果能使用到索引来排序,那么可以极大的提高排序的速度,要使用索引来排序需要满足以下两点即可。

  • 1、ORDER BY子句后的列顺序要与组合索引的列顺序一致,且所有排序列的排序方向(正序/倒序)需一致
  • 2、所查询的字段值需要包含在索引列中,及满足覆盖索引

通过例子来具体分析

在user_test表上创建一个组合索引

ALTER TABLE user_test ADD INDEX index_user(user_name , city , age);

可以使用到索引排序的案例

1、SELECT user_name, city, age FROM user_test ORDER BY user_name;

2、SELECT user_name, city, age FROM user_test ORDER BY user_name, city;

3、SELECT user_name, city, age FROM user_test ORDER BY user_name DESC, city DESC;

4、SELECT user_name, city, age FROM user_test WHERE user_name = 'feinik' ORDER BY city;

注:第4点比较特殊一点,如果where查询条件为索引列的第一列,且为常量条件,那么也可以使用到索引

无法使用索引排序的案例

1、sex不在索引列中

SELECT user_name, city, age FROM user_test ORDER BY user_name, sex;

2、排序列的方向不一致

SELECT user_name, city, age FROM user_test ORDER BY user_name ASC, city DESC;

3、所要查询的字段列sex没有包含在索引列中

SELECT user_name, city, age, sex FROM user_test ORDER BY user_name;

4、where查询条件后的user_name为范围查询,所以无法使用到索引的其他列

SELECT user_name, city, age FROM user_test WHERE user_name LIKE 'feinik%' ORDER BY city;

5、多表连接查询时,只有当ORDER BY后的排序字段都是第一个表中的索引列(需要满足以上索引排序的两个规则)时,方可使用索引排序。如:再创建一个用户的扩展表user_test_ext,并建立uid的索引。

DROP TABLE IF EXISTS user_test_ext;

CREATE TABLE user_test_ext(

    id int AUTO_INCREMENT PRIMARY KEY,

    uid int NOT NULL,

    u_password VARCHAR(64) NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

ALTER TABLE user_test_ext ADD INDEX index_user_ext(uid);

走索引排序

SELECT user_name, city, age FROM user_test u LEFT JOIN user_test_ext ue ON u.id = ue.uid ORDER BY u.user_name;

不走索引排序

SELECT user_name, city, age FROM user_test u LEFT JOIN user_test_ext ue ON u.id = ue.uid ORDER BY ue.uid;

6、总结

本文主要讲了B+Tree树结构的索引规则,不同索引的创建,以及如何正确的创建出高效的索引技巧来尽可能的提高查询速度,当然了关于索引的使用技巧不单单只有这些,关于索引的更多技巧还需平时不断的积累相关经验。

© 著作权归作者所有

共有 人打赏支持
FEINIK
粉丝 224
博文 57
码字总数 53142
作品 0
广州
后端工程师
加载中

评论(24)

波波先森
波波先森
很清楚,谢谢楼主!虽然现在的工作不会用到数据库,不过多些知识储备总是好的。
LUOYIRUIX
LUOYIRUIX
还行
zjg23
zjg23
很清晰,不错!
FEINIK
FEINIK

引用来自“hackem”的评论

3、所要查询的字段列sex没有包含在索引列中
这句话说法有误,举例中没有where条件,导致未走索引,而不是所要查询的字段列没有包含在索引列中导致的
【5.6、如何使用索引来排序】中讲的是索引排序问题,第3点就是举例没有where的条件下的排序查询哦!:smile:
hackem
hackem
3、所要查询的字段列sex没有包含在索引列中
这句话说法有误,举例中没有where条件,导致未走索引,而不是所要查询的字段列没有包含在索引列中导致的
咱累了
mark
咱累了
mark
zigzagroad
zigzagroad
马克
chelze
chelze
赞一个
7大绝招帮你轻轻松松提升 MySQL 性能。

  【IT168 资讯】随着负载和文件大小的增长,性能往往会降低。记住以下的7个关键点,让你的MySQL轻松保持平稳运行。   测量应用程序的方式之一是测量它的性能。用户体验是衡量应用程序性...

it168网站
2017/10/26
0
0
如何让MySQL的查询速度提升300倍

  【IT168 技术】MySQL内置了慢查询日志,默认情况下慢查询日志是禁用的,首先你要打开my.cnf文件并将slowquerylog变量设置为“On”,这其中还有两个很重要的参数需要设置,longquerytime...

it168网站
2017/05/08
0
0
MySQL索引一(B+Tree)

一:索引的类型 二:索引的优点 三:高性能索引策略 四:索引案例 1.1类型介绍 索引有很多类型,可以为不同场景提供更好的性能。在MySQL中,索引是在存储引擎层而不是服务器层实现的。所以,...

C_凡夫俗子
06/26
0
0
MySQL InnoDB索引介绍及优化ZZ

正文: 一、先说说什么是索引?索引(index)翻译为一个目录,用于快速定位我们想要找的数据的位置。例如:我们把一个数据库比作一本书,而索引(index)就是书中的目录,此刻要找到书的某个感兴...

treenewtreenew
2016/12/20
9
0
10 分钟 MySQL 索引从入门到精通

10分钟,只要10分钟,带你了解 MySQL 索引的精华所在,走一走看一看,看了不吃亏,看了不上当~ :-D 1、索引是做什么的? 索引用于快速找出在某个列中有一特定值的行。不使用索引,MySQL必须从...

大数据之路
2015/11/19
0
4

没有更多内容

加载失败,请刷新页面

加载更多

Spark Load Data and Export Data

Load_Data_Command 一、导入数据-加载csv文件数据作为spark 临时表DataSource(不需要提前创建表,方便数据分析) 该命令将csv文件导入到临时表中,命令格式为 load data '文件路径' table [...

Avner
7分钟前
0
0
CDH5.13离线安装Spark2.3详细步骤

简介: 在我的CDH5.13集群中,默认安装的spark是1.6版本,这里需要将其升级为spark2.x版本。经查阅官方文档,发现spark1.6和2.x是可以并行安装的,也就是说可以不用删除默认的1.6版本,可以直...

hblt-j
11分钟前
0
0
Add XSS protection headers on Nginx

Add XSS protection headers on Nginx Add the following line in the http or server part of your Nginx configuration : ... # XSS Protection add_header X-Frame-Opt......

idoz
11分钟前
0
0
cmake windows 配置xp toolset

MPRO
18分钟前
0
0
day125-20181023-英语流利阅读-待学习

外卖员不要哭,打零工不容易 雪梨 2018-10-23 1.今日导读 上期我们讲到,有人认为:“零工经济”虽然没有占领全世界,但它剥夺了劳动者的合法权利,加剧了工作的不稳定性,那么“零工经济”是...

飞鱼说编程
30分钟前
9
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部