文档章节

R语言系列:数据的基本运算

explore
 explore
发布于 2012/10/25 09:13
字数 1174
阅读 23280
收藏 0

基本运算符号
1、基本数学计算
+、-、*、/、^、%%(求模)、%/%(整除)
注意:求模运算两边若为小数,则整数和小数部分分别求模。例:5.6%%2.2
2、比较运算:>、<、>=、<=、==、!=
3、&、|、!、&&、||、xor
注意:运算符“逻辑与”和“逻辑或”存在两种形式,“&”和“|”作用在对象中的每一个元素上并且返回和比较次数相等长度的逻辑值;“&&”和“||”只作用在对象的第一个元素上。

xor为异或,两值不等为真,两值相等为假。例:xor(0, 1)
4、常见运算函数
abs、sqrt、exp、log、log10、log2
sin、cos、tan、asin、acos、atan、atan2
choose(n, k) #n个里面取k个的组合数
计算n!的方法:factorial(n); gamma(n+1); prod(1:n)
sign(x) #返回x的正负号

R中计算的两个特点
1、向量化(逐个元素循环操作)
例:y=1:10; y+1; sqrt(y);
2、两个不等长的变量循环填充
例:x=1:3; y=1:10; z=x+y
注意:当两个变量长度不是整倍数的关系,会有警告信息。

向量常用统计函数
max、min、range(返回最小、最大两个值)、sum、prod(连乘Π)、mean、median(中位数)、var、sd、length、rev(取逆序)
which.max、which.min:返回最大、最小值的下标
which:返回符合条件元素的下标
x=matrix(1:20,4,byrow=T);
which(x > 8) #返回一个向量
which(x > 8, arr.ind=T) #返回一个指示行列号的矩阵
diff:差分,即x[i+1]-x[i]
cumsum:计算x[i]=sum(x[1]:x[i])
cumprod:计算x[i]=prod(x[1]:x[i])
sort、rank、order:参见http://my.oschina.net/explore/blog/84359
quantile(x, probs=) #默认probs为c(0, .25, .5, .75, 1)
例:x=0:100; quantile(x); quantile(x, probs=seq(0, 1, 0.1))
IQR:四分位数间距
summary:给出常见统计量,包括四分位数、最小、最大和中位数
weighted.mean(x, y) #加权平均,等同于sum(x*y)/sum(y)
cov、cor:两向量的协方差和线性相关系数
#可使用参数 method = c("pearson", "kendall", "spearman"))指定计算方法,默认第一种。
#方法名称可使用首字母缩写
table(x) #当x为定性数据时,统计x的频数
table(x,y,z) #输出由x、y、z三个定性变量组成的列联表
ftable(x,y,z) #以多重嵌套二维表的形式输出有x、y、z三个定性变量组成的列联表
nchar(x) #x为字符串,求x的字符个数
例:x=c("china", "english", "amercia"); nchar(x);
match(x,y) #再y中逐个查找x,若有返回在y中匹配的位置,若无返回NA
all、any #分别报告各元素是否全部或至少一个为TRUE
cut()、findInterval()用于数值向量的区间划分
split()可以将一个数据框根据因子变量进行拆分

矩阵常用函数
t:转置(行列互换)
cov、cor:协方差阵和协相关系数阵
diag:提取对角元素,输出为一个向量
rbind、cbind:按行合并、按列合并,可合并若干向量,也可合并若干矩阵
:逐元乘积 %%:矩阵乘法
outer:外积,注意,不是叉积
det:矩阵的行列式值
eigen:特征根和特征向量
qr:QR分解
svd:奇异值分解
scale:对矩阵进行中心化和标准化

集合运算
union(x,y) #求并集
intersect(x,y) #求交集
setdiff(x,y) #求属于x而不属于y的所有元素
setequal(x,y) #判断x与y是否相等
a %in% y #判断a是否为y中的元素
choose(n, k) #n个里面取k个的组合数
combn(x,n) #x中的元素每次取n个的所有组合
combn(x,n,f) #将这些组合用于指定函数f

向量化(apply)
apply(x, MARGIN, FUN) #MARGIN为1则逐行运算,2则逐列运算。FUN为所用函数。
当x为数组时,MARGIN可大于2,或使用c(1,2)表示按行列计算。
lapply、sapply:用于向量或列表,前者返回列表,后者返回矩阵或向量

附:峰度和偏度的计算
R默认不提供函数计算这两个值。
如果需要计算,可以自编公式或者使用fBasics包。
加载fBasics包,可使用以下命令进行计算:
skewness(x) #偏度
kurtosis(x) #峰度
basicStates(x) #提供16个统计量

> x=rnorm(1000)
> basicStats(x)
x
nobs 1000.000000
NAs 0.000000
Minimum -3.263744
Maximum 3.462402
1. Quartile -0.706243
3. Quartile 0.652421
Mean -0.043407
Median 0.003339
Sum -43.406637
SE Mean 0.031843
LCL Mean -0.105894
UCL Mean 0.019081
Variance 1.014007
Stdev 1.006979
Skewness -0.029121
Kurtosis -0.179738

© 著作权归作者所有

共有 人打赏支持
explore
粉丝 12
博文 60
码字总数 34421
作品 0
太原
R语言构建层次分析模型不看一下吗~

作者简介 杜雨,EasyCharts团队成员,R语言中文社区专栏作者,兴趣方向为:Excel商务图表,R语言数据可视化,地理信息数据可视化。 个人公众号:数据小魔方(微信ID:datamofang) ,“数据小...

R语言中文社区
05/13
0
0
天善智能数据分析可视化广深特训营第一期:R语言(初中级)圆满结束!

7月22日,天善智能数据分析可视化广深特训营第一期在深圳福田赛格广场落下帷幕。 本次参与培训的,有来自平安证券,oppo,顺丰科技,投哪网等企业一线的数十名数据分析人员。 本次线下培训,...

天善智能
07/24
0
0
【沙龙资料】模型效果评估及优化—天善智能数据之美深圳站谢佳标老师分享

本文为谢佳标老师在天善智能数据之美深圳站的分享,更多精彩内容可以参加谢佳标老师系列课程:数据分析与挖掘R语言十三式,打造R全栈专家 1、模型效果评估常用方法 2、混淆矩阵 3、ROC曲线绘...

天善智能
06/12
0
0
R语言学习笔记之相关性矩阵分析及其可视化

计算相关矩阵 R内置函数 cor() 可以用来计算相关系数:cor(x, method = c("pearson", "kendall", "spearman")),如果数据有缺失值,用cor(x, method = "pearson", use = "complete.obs")。 ...

R语言中文社区
02/05
0
0
谈谈R中的乱码(三)

前面讲过,R 中字符向量可以有多种编码。一般情况下,对于混合编码,R 都能很好的自动处理。例如: x1 <- '中国'x2 <- iconv(x1, 'GB2312', 'UTF-8') == 判断也没问题 x2 == '中国' [1] TRU...

R语言中文社区
02/08
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

(一)软件测试专题——之Linux常用命令篇01

本文永久更新地址:https://my.oschina.net/bysu/blog/1931063 【若要到岸,请摇船:开源中国 不最醉不龟归】 Linux的历史之类的很多书籍都习惯把它的今生来世,祖宗十八代都扒出来,美其名曰...

不最醉不龟归
26分钟前
6
0
蚂蚁金服Java开发三面

8月20号晚上8点进行了蚂蚁金服Java开发岗的第三面,下面开始: 自我介绍(要求从实践过程以及技术背景角度着重介绍) 实习经历,说说你在公司实习所做的事情,学到了什么 关于你们的交易平台...

edwardGe
33分钟前
7
0
TypeScript基础入门 - 函数 - this(三)

转载 TypeScript基础入门 - 函数 - this(三) 项目实践仓库 https://github.com/durban89/typescript_demo.gittag: 1.2.4 为了保证后面的学习演示需要安装下ts-node,这样后面的每个操作都能...

durban
43分钟前
0
0
Spark core基础

Spark RDD的五大特性 RDD是由一系列的Partition组成的,如果Spark计算的数据是在HDFS上那么partition个数是与block数一致(大多数情况) RDD是有一系列的依赖关系,有利于Spark计算的容错 RDD中每...

张泽立
51分钟前
0
0
如何搭建Keepalived+Nginx+Tomcat高可用负载均衡架构

一.概述 初期的互联网企业由于业务量较小,所以一般单机部署,实现单点访问即可满足业务的需求,这也是最简单的部署方式,但是随着业务的不断扩大,系统的访问量逐渐的上升,单机部署的模式已...

Java大蜗牛
今天
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部