文档章节

Pytorch是什么?关于Pytorch!

earnpls
 earnpls
发布于 2017/07/25 09:14
字数 1210
阅读 163
收藏 0

PyTorch是一个提供两个高级功能的python包:

  1. 具有强GPU加速度的张量计算(如numpy)
  2. 深层神经网络建立在基于磁带的自动调整系统上

您可以重用您最喜爱的python软件包,如numpy,scipy和Cython,以便在需要时扩展PyTorch。

PyTorch在细粒度级别是由以下组件组成的库:

  1. 包 描述
  2. torch 像NumPy这样的Tensor图书馆,拥有强大的GPU支持
  3. torch.autograd 一种基于磁带的自动分类库,支持所有可区分的Tensor操作手电筒
  4. torch.nn 一个神经网络库与autograd设计了最大的灵活性torch.optim 一种与torch.nn一起使用的优化包,具有标准优化方法,如SGD,RMSProp,LBFGS,Adam等。
  5. torch.multiprocessing python多处理,但是具有魔法内存共享的手电筒传感器跨过程。适用于数据加载和hogwild培训。torch.utils DataLoader,Trainer等实用功能为方便起见
  6. torch.legacy(.nn / .optim) 由于向后兼容性原因,已经从割炬移植的旧代码

通常使用PyTorch可以:

使用GPU的功能代替numpy。 一个深刻的学习研究平台,提供最大的灵活性和速度

进一步阐述:

GPU准备好的Tensor库

如果你使用numpy,那么你已经使用了Tensors(aka ndarray)。 GPU准备好的Tensor库

PyTorch提供可以在CPU或GPU上生活的Tensors,并加速计算量。

我们提供各种各样的张量程序,以加速和适应您的科学计算需求,如切片,索引,数学运算,线性代数,缩减。他们快!

动态神经网络:基于磁带的自动格式

PyTorch具有构建神经网络的独特方式:使用和重放磁带录音机。

大多数框架,比如请输入代码TensorFlowTheanoCaffeCNTK拥有世界的静态视图。必须建立一个神经网络,并重复使用相同的结构。改变网络的行为方式意味着必须从头开始。

使用PyTorch,我们使用一种称为反向模式自动分化的技术,它允许您以零延迟或开销改变网络的任意运行方式。我们的灵感来自于在这个题目的几个研究论文,以及当前和过去的工作,如 autograd, autograd, Chainer等。

虽然这种技术并不是PyTorch所特有的,但它是迄今为止最快的实现之一。您可以为您的疯狂研究获得最佳的速度和灵活性。 PyTorch动态神经网络

Python第一

PyTorch不是一个Python绑定到一个单一的C ++框架。它被构建为深入整合到Python中。您可以自然地使用它,就像您将使用numpy / scipy / scikit学习等。您可以使用自己喜欢的库并使用CythonNumba等软件包,在Python本身编写新的神经网络层。我们的目标是不要在适当的时候重塑轮子。

势在必得的经验

PyTorch的设计是直观的,线性的思想和易于使用。当您执行一行代码时,它将被执行。没有一个异步的世界观。当您进入调试器或接收错误消息和堆栈跟踪时,理解它们是直接的。堆栈跟踪正好指向您的代码定义的位置。我们希望您不要花费几个小时来调试代码,因为堆栈跟踪错误或异步和不透明的执行引擎。

快速和精益

PyTorch具有最小的框架开销。我们集成加速库,如英特尔MKL和NVIDIA(CuDNN,NCCL),以最大限度地提高速度。核心是CPU和GPU Tensor和神经网络后端(TH,THC,THNN,THCUNN)都是用C99 API写成独立的库。 它们已经成熟,并已经过多年的测试。

因此,PyTorch相当快 - 无论您是运行小型或大型神经网络。

PyTorch的内存使用率与Torch或其他一些替代品相比非常有效。我们为GPU编写了自定义内存分配器,以确保您的深入学习模型具有最大的内存效率。这使您能够训练比以前更大的深入学习模型。

扩展没有痛苦

编写新的神经网络模块,或与PyTorch的Tensor API进行接口的设计是简单而且抽象最少的。

您可以使用torch API 或您喜欢的基于numpy的库(如SciPy)在Python中编写新的神经网络层

如果你想用C / C ++图层,我们根据一个扩展API CFFI是有效的,并以最小的样板。 没有需要编写的包装器代码。你可以在这里看到一个例子


原创文章,转载请注明 :Pytorch是什么?关于Pytorch! - pytorch中文网
原文出处: https://ptorch.com/news/1.html
问题交流群 :168117787

本文转载自:https://ptorch.com/news/1.html

共有 人打赏支持
earnpls
粉丝 5
博文 26
码字总数 74
作品 0
昌平
程序员
一文读懂PyTorch张量基础(附代码)

本文介绍了PyTorch中的Tensor类,它类似于Numpy中的ndarray,它构成了在PyTorch中构建神经网络的基础。 我们已经知道张量到底是什么了,并且知道如何用Numpy的ndarray来表示它们,现在我们看...

技术小能手
06/13
0
0
PyTorch:60分钟入门学习

最近在学习PyTorch这个深度学习框架,在这里做一下整理分享给大家,有什么写的不对或者不好的地方,还请大侠们见谅啦~~~ 写在前面 本文就是主要是对PyTorch的安装,以及入门学习做了记录,...

与阳光共进早餐
01/15
0
0
融合 Caffe2、ONNX 的新版 PyTorch 发布在即,能否赶超 TensorFlow?

雷锋网(公众号:雷锋网) AI 研习社按,上个月,Caffe2 代码正式并入 PyTorch,就在今天,Facebook AI 系统与平台部(AI Infra and Platform)副总 Bill Jia 发文表示,PyTorch 1.0 发布在即,...

思颖
05/03
0
0
Keras vs PyTorch:谁是「第一」深度学习框架?

  选自Deepsense.ai   作者:Rafa Jakubanis、Piotr Migdal   机器之心编译   参与:路、李泽南、李亚洲      「第一个深度学习框架该怎么选」对于初学者而言一直是个头疼的问题...

机器之心
06/30
0
0
PyTorch 重大更新,0.4.0 版本支持 Windows 系统

雷锋网(公众号:雷锋网) AI 研习社最新消息,PyTorch 官方发布 0.4.0 版本,该版本的 PyTorch 有多项重大更新,其中最重要的改进是支持 Window 系统。 2017 年初,Facebook 在机器学习和科学...

孔令双
04/25
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Mac OS X下Maven的安装与配置

Mac OS X 安装Maven: 下载 Maven, 并解压到某个目录。例如/Users/robbie/apache-maven-3.3.3 打开Terminal,输入以下命令,设置Maven classpath $ vi ~/.bash_profile 添加下列两行代码,之后...

TonyStarkSir
今天
3
0
关于编程,你的练习是不是有效的?

最近由于工作及Solution项目的影响,我在重新学习DDD和领域建模的一些知识。然后,我突然就想到了这个问题,以及我是怎么做的? 对于我来说,提升技能的项目会有四种: 纯兴趣驱动的项目。即...

问题终结者
今天
4
0
打开eclipse出现an error has occurred see the log file

解决方法: 1,打开eclipse安装目录下的eclipse.ini文件; 2,打开的文本文件最后添加一行 --add-modules=ALL-SYSTEM 3,保存重新打开Eclipse。...

任梁荣
昨天
4
0
搞定Northwind示例数据库,无论哪个版本的SQLServer都受用

Northwind数据库 从这里可以找到突破口: http://social.msdn.microsoft.com/Forums/zh-CN/Vsexpressvb/thread/8490a1c6-9018-40c9-aafb-df9f79d29cde 下面是MSDN: http://msdn2.microsoft......

QQZZFT
昨天
1
0
mysql主从同步,安装配置操作

准备 两台mysql服务,我这里准备了如下: 主库:192.168.176.128 从库:192.168.176.131 如何在Linux上安装mysql服务,请看https://blog.csdn.net/qq_18860653/article/details/80250499 操作...

小致dad
昨天
5
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部