文档章节

Apache Flink 零基础入门(一):基础概念解析

Vincent-Duan
 Vincent-Duan
发布于 08/21 17:16
字数 3649
阅读 98
收藏 1

Apache Flink 的定义、架构及原理

    Apache Flink 是一个分布式大数据处理引擎,可对有限数据流和无限数据流进行有状态或无状态的计算,能够部署在各种集群环境,对各种规模大小的数据进行快速计算。

Flink Application

了解 Flink 应用开发需要先理解 Flink 的 Streams、State、Time 等基础处理语义以及 Flink 兼顾灵活性和方便性的多层次 API。

  • Streams,流,分为有限数据流与无限数据流,unbounded stream 是有始无终的数据流,即无限数据流;而 bounded stream 是限定大小的有始有终的数据集合,即有限数据流,二者的区别在于无限数据流的数据会随时间的推演而持续增加,计算持续进行且不存在结束的状态,相对的有限数据流数据大小固定,计算最终会完成并处于结束的状态。
  • State,状态是计算过程中的数据信息,在容错恢复和 Checkpoint 中有重要的作用,流计算在本质上是 Incremental Processing,因此需要不断查询保持状态;另外,为了确保 Exactly- once 语义,需要数据能够写入到状态中;而持久化存储,能够保证在整个分布式系统运行失败或者挂掉的情况下做到 Exactly- once,这是状态的另外一个价值。
  • Time,分为 Event time、Ingestion time、Processing time,Flink 的无限数据流是一个持续的过程,时间是我们判断业务状态是否滞后,数据处理是否及时的重要依据。
  • API,API 通常分为三层,由上而下可分为 SQL / Table API、DataStream API、ProcessFunction 三层,API 的表达能力及业务抽象能力都非常强大,但越接近 SQL 层,表达能力会逐步减弱,抽象能力会增强,反之,ProcessFunction 层 API 的表达能力非常强,可以进行多种灵活方便的操作,但抽象能力也相对越小。

Flink Architecture

  1. Flink 具备统一的框架处理有界和无界两种数据流的能力
  2. 部署灵活,Flink 底层支持多种资源调度器,包括 Yarn、Kubernetes 等。Flink 自身带的 Standalone 的调度器,在部署上也十分灵活。
  3. 极高的可伸缩性,可伸缩性对于分布式系统十分重要,阿里巴巴双 11 大屏采用 Flink 处理海量数据,使用过程中测得 Flink 峰值可达 17 亿 / 秒。
  4. 极致的流式处理性能。Flink 相对于 Storm 最大的特点是将状态语义完全抽象到框架中,支持本地状态读取,避免了大量网络 IO,可以极大提升状态存取的性能。

Flink Operation 

  • Flink 具备 7 X 24 小时高可用的 SOA(面向服务架构),原因是在实现上 Flink 提供了一致性的 Checkpoint。Checkpoint 是 Flink 实现容错机制的核心,它周期性的记录计算过程中 Operator 的状态,并生成快照持久化存储。当 Flink 作业发生故障崩溃时,可以有选择的从 Checkpoint 中恢复,保证了计算的一致性。

  • Flink 本身提供监控、运维等功能或接口,并有内置的 WebUI,对运行的作业提供 DAG 图以及各种 Metric 等,协助用户管理作业状态。

 Flink 的应用场景:Data Pipeline

 

Data Pipeline 的核心场景类似于数据搬运并在搬运的过程中进行部分数据清洗或者处理,而整个业务架构图的左边是 Periodic ETL,它提供了流式 ETL 或者实时 ETL,能够订阅消息队列的消息并进行处理,清洗完成后实时写入到下游的 Database 或 File system 中。场景举例:

  • 实时数仓。当下游要构建实时数仓时,上游则可能需要实时的 Stream ETL。这个过程会进行实时清洗或扩展数据,清洗完成后写入到下游的实时数仓的整个链路中,可保证数据查询的时效性,形成实时数据采集、实时数据处理以及下游的实时 Query。
  • 搜索引擎推荐。搜索引擎这块以淘宝为例,当卖家上线新商品时,后台会实时产生消息流,该消息流经过 Flink 系统时会进行数据的处理、扩展。然后将处理及扩展后的数据生成实时索引,写入到搜索引擎中。这样当淘宝卖家上线新商品时,能在秒级或者分钟级实现搜索引擎的搜索。

 Flink 应用场景:Data Analytics

Data Analytics,如图,左边是 Batch Analytics,右边是 Streaming Analytics。Batch Analysis 就是传统意义上使用类似于 Map Reduce、Hive、Spark Batch 等,对作业进行分析、处理、生成离线报表,Streaming Analytics 使用流式分析引擎如 Storm,Flink 实时处理分析数据,应用较多的场景如实时大屏、实时报表。

Flink 应用场景:Data Driven

从某种程度上来说,所有的实时的数据处理或者是流式数据处理都是属于 Data Driven,流计算本质上是 Data Driven 计算。应用较多的如风控系统,当风控系统需要处理各种各样复杂的规则时,Data Driven 就会把处理的规则和逻辑写入到 Datastream 的 API 或者是 ProcessFunction 的 API 中,然后将逻辑抽象到整个 Flink 引擎中,当外面的数据流或者是事件进入就会触发相应的规则,这就是 Data Driven 的原理。在触发某些规则后,Data Driven 会进行处理或者是进行预警,这些预警会发到下游产生业务通知,这是 Data Driven 的应用场景,Data Driven 在应用上更多应用于复杂事件的处理。

「有状态的流式处理」概念解析

传统批处理

    传统批处理方法是持续收取数据,以时间作为划分多个批次的依据,再周期性地执行批次运算。但假设需要计算每小时出现事件转换的次数,如果事件转换跨越了所定义的时间划分,传统批处理会将中介运算结果带到下一个批次进行计算;除此之外,当出现接收到的事件顺序颠倒情况下,传统批处理仍会将中介状态带到下一批次的运算结果中,这种处理方式也不尽如人意。

理想方法

    

第一,要有理想方法,这个理想方法是引擎必须要有能力可以累积状态和维护状态,累积状态代表着过去历史中接收过的所有事件,会影响到输出。
第二,时间,时间意味着引擎对于数据完整性有机制可以操控,当所有数据都完全接受到后,输出计算结果。
第三,理想方法模型需要实时产生结果,但更重要的是采用新的持续性数据处理模型来处理实时数据,这样才最符合 continuous data 的特性。

流式处理

流式处理简单来讲即有一个无穷无尽的数据源在持续收取数据,以代码作为数据处理的基础逻辑,数据源的数据经过代码处理后产生出结果,然后输出,这就是流式处理的基本原理。

分布式流式处理

 

假设 Input Streams 有很多个使用者,每个使用者都有自己的 ID,如果计算每个使用者出现的次数,我们需要让同一个使用者的出现事件流到同一运算代码,这跟其他批次需要做 group by 是同样的概念,所以跟 Stream 一样需要做分区,设定相应的 key,然后让同样的 key 流到同一个 computation instance 做同样的运算。

有状态分布式流式处理

如图,上述代码中定义了变数 X,X 在数据处理过程中会进行读和写,在最后输出结果时,可以依据变数 X 决定输出的内容,即状态 X 会影响最终的输出结果。这个过程中,第一个重点是先进行了状态 co-partitioned key by,同样的 key 都会流到 computation instance,与使用者出现次数的原理相同,次数即所谓的状态,这个状态一定会跟同一个 key 的事件累积在同一个 computation instance。

    相当于根据输入流的 key 重新分区的状态,当分区进入 stream 之后,这个 stream 会累积起来的状态也变成 copartiton 了。第二个重点是 embeded local state backend。有状态分散式流式处理的引擎,状态可能会累积到非常大,当 key 非常多时,状态可能就会超出单一节点的 memory 的负荷量,这时候状态必须有状态后端去维护它;在这个状态后端在正常状况下,用 in-memory 维护即可。

Apache Flink 的优势

状态容错

当我们考虑状态容错时难免会想到精确一次的状态容错,应用在运算时累积的状态,每笔输入的事件反映到状态,更改状态都是精确一次,如果修改超过一次的话也意味着数据引擎产生的结果是不可靠的。

  • 如何确保状态拥有精确一次(Exactly-once guarantee)的容错保证?
  • 如何在分散式场景下替多个拥有本地状态的运算子产生一个全域一致的快照(Global consistent snapshot)?
  • 更重要的是,如何在不中断运算的前提下产生快照?

简单场景的精确一次容错方法

还是以使用者出现次数来看,如果某个使用者出现的次数计算不准确,不是精确一次,那么产生的结果是无法作为参考的。在考虑精确的容错保证前,我们先考虑最简单的使用场景,如无限流的数据进入,后面单一的 Process 进行运算,每处理完一笔计算即会累积一次状态,这种情况下如果要确保 Process 产生精确一次的状态容错,每处理完一笔数据,更改完状态后进行一次快照,快照包含在队列中并与相应的状态进行对比,完成一致的快照,就能确保精确一次。

分布式状态容错

Flink 作为分布式的处理引擎,在分布式的场景下,进行多个本地状态的运算,只产生一个全域一致的快照,如需要在不中断运算值的前提下产生全域一致的快照,就涉及到分散式状态容错。

关于 Global consistent snapshot,当 Operator 在分布式的环境中,在各个节点做运算,首先产生 Global consistent snapshot 的方式就是处理每一笔数据的快照点是连续的,这笔运算流过所有的运算值,更改完所有的运算值后,能够看到每一个运算值的状态与该笔运算的位置,即可称为 consistent snapshot,当然,Global consistent snapshot 也是简易场景的延伸。

首先了解一下 Checkpoint,上面提到连续性快照每个 Operator 运算值本地的状态后端都要维护状态,也就是每次将产生检查点时会将它们传入共享的 DFS 中。当任何一个 Process 挂掉后,可以直接从三个完整的 Checkpoint 将所有的运算值的状态恢复,重新设定到相应位置。Checkpoint 的存在使整个 Process 能够实现分散式环境中的 Exactly-once。

分散式快照(Distributed Snapshots)方法

关于 Flink 如何在不中断运算的状况下持续产生 Global consistent snapshot,其方式是基于用 simple lamport 演算法机制下延伸的。已知的一个点 Checkpoint barrier, Flink 在某个 Datastream 中会一直安插 Checkpoint barrier,Checkpoint barrier 也会 N — 1 等等,Checkpoint barrier N 代表着所有在这个范围里面的数据都是 Checkpoint barrier N。

举例:假设现在需要产生 Checkpoint barrier N,但实际上在 Flink 中是由 job manager 触发 Checkpoint,Checkpoint 被触发后开始从数据源产生 Checkpoint barrier。当 job 开始做 Checkpoint barrier N 的时候,可以理解为 Checkpoint barrier N 需要逐步填充左下角的表格。

如图,当部分事件标为红色,Checkpoint barrier N 也是红色时,代表着这些数据或事件都由 Checkpoint barrier N 负责。Checkpoint barrier N 后面白色部分的数据或事件则不属于 Checkpoint barrier N。

在以上的基础上,当数据源收到 Checkpoint barrier N 之后会先将自己的状态保存,以读取 Kafka 资料为例,数据源的状态就是目前它在 Kafka 分区的位置,这个状态也会写入到上面提到的表格中。下游的 Operator 1 会开始运算属于 Checkpoint barrier N 的数据,当 Checkpoint barrier N 跟着这些数据流动到 Operator 1 之后,Operator 1 也将属于 Checkpoint barrier N 的所有数据都反映在状态中,当收到 Checkpoint barrier N 时也会直接对 Checkpoint 去做快照。

当快照完成后继续往下游走,Operator 2 也会接收到所有数据,然后搜索 Checkpoint barrier N 的数据并直接反映到状态,当状态收到 Checkpoint barrier N 之后也会直接写入到 Checkpoint N 中。以上过程到此可以看到 Checkpoint barrier N 已经完成了一个完整的表格,这个表格叫做 Distributed Snapshots,即分布式快照。分布式快照可以用来做状态容错,任何一个节点挂掉的时候可以在之前的 Checkpoint 中将其恢复。继续以上 Process,当多个 Checkpoint 同时进行,Checkpoint barrier N 已经流到 job manager 2,Flink job manager 可以触发其他的 Checkpoint,比如 Checkpoint N + 1,Checkpoint N + 2 等等也同步进行,利用这种机制,可以在不阻挡运算的状况下持续地产生 Checkpoint。

本文转载自:http://wuchong.me/blog/2019/08/20/flink-sql-training/?nsukey=9cL2sKFQPd8vtcV81nbZDKJDw%2Bng7ZoaVl...

Vincent-Duan

Vincent-Duan

粉丝 32
博文 429
码字总数 237803
作品 0
海淀
私信 提问
Flink入坑指南 第三章:第一个作业

摘要: Flink入坑指南系列文章,从实际例子入手,一步步引导用户零基础入门实时计算/Flink,并成长为使用Flink的高阶用户。本文属个人原创,仅做技术交流之用,笔者才疏学浅,如有错误,欢迎...

小白薇薇
2018/12/27
0
0
Apache Flink实战(一) - 简介

1 功能 2 用户 国际 国内 3 特点 ◆ 结合Java、Scala两种语言 ◆ 从基础到实战 ◆ 系统学习Flink的核心知识 ◆ 快速完成从入门到上手企业开发的能力提升 4 安排 ◆ 初识Flink ◆ 编程模型及核...

javaedge
04/26
0
0
5 分钟从零构建第一个 Apache Flink 应用

在本文中,我们将从零开始,教您如何构建第一个Apache Flink (以下简称Flink)应用程序。 1、开发环境准备 Flink 可以运行在 Linux, Max OS X, 或者是 Windows 上。为了开发 Flink 应用程序...

大数据之路
2013/06/25
13.3K
3
Flink 源码解析 —— TaskManager 处理 SubmitJob 的过程

TaskManager 处理 SubmitJob 的过程 https://t.zsxq.com/eu7mQZj 博客 1、Flink 从0到1学习 —— Apache Flink 介绍 2、Flink 从0到1学习 —— Mac 上搭建 Flink 1.6.0 环境并构建运行简单程...

zhisheng_t
09/03
15
0
Flink 源码解析 —— 分析 Streaming WordCount 程序的执行过程

流处理 WordCount 程序 https://t.zsxq.com/qnMFEUJ 博客 1、Flink 从0到1学习 —— Apache Flink 介绍 2、Flink 从0到1学习 —— Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门 3、F...

zhisheng_t
09/01
11
0

没有更多内容

加载失败,请刷新页面

加载更多

shangcheng-my

1.数据库主键、外键类型为bigint,那么在后台应该用什么类型的变量定义? 后台用string接收,因为前段传过来的一般都是json字符串,后台直接接收,mysql是可以吧数字类型的字符串转换为对应的...

榴莲黑芝麻糊
昨天
4
0
微服务架构依赖图

基于spring-cloud-alibaba + dubbo

龙影
昨天
5
0
Centos7 安装zabbix-agent

rpm -i https://repo.zabbix.com/zabbix/4.2/rhel/6/x86_64/zabbix-release-4.2-2.el6.noarch.rpm 可以到https://repo.zabbix.com/zabbix找到对应的版本 yum install zabbix-agent -y 出现E......

abowu
昨天
8
0
文本编辑器GNU nano 4.4 发布

GNU nano 4.4 "Hagelslag" 更新日志: 启动时,光标可以放在第一个或最后一个出现位置 字符串前面带有+/string 或 +?string的字符串。 发生自动硬包装时((--breaklonglines),任何前导引号...

linuxCool
昨天
7
0
你知道字节序吗

字节序 最近在调一个自定义报文的接口时,本来以为挺简单的,发现踩了好几个坑,其中一个比较“刻骨铭心”的问题就是数据的字节序问题。 背景 自定义报文,调用接口,服务端报文解析失败 iO...

杭城小刘
昨天
5
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部