文档章节

hive与hbase数据交互的详解指南

开拓者-2017
 开拓者-2017
发布于 2014/07/05 14:32
字数 2428
阅读 192
收藏 2

HBase和Hive的集成原理

Hive和Hbase有各自不同的特征:hive是高延迟、结构化和面向分析的,hbase是低延迟、非结构化和面向编程的。Hive数据仓库在hadoop上是高延迟的。Hive集成Hbase就是为了使用hbase的一些特性。如下是hive和hbase的集成架构:

图1 hive和hbase架构图

        Hive集成HBase可以有效利用HBase数据库的存储特性,如行更新和列索引等。在集成的过程中注意维持HBase jar包的一致性。Hive集成HBase需要在Hive表和HBase表之间建立映射关系,也就是Hive表的列(columns)和列类型(column types)与HBase表的列族(column families)及列限定词(column qualifiers)建立关联。每一个在Hive表中的域都存在于HBase中,而在Hive表中不需要包含所有HBase中的列。HBase中的RowKey对应到Hive中为选择一个域使用:key来对应,列族(cf:)映射到Hive中的其它所有域,列为(cf:cq)。例如下图2为Hive表映射到HBase表:

图2 Hive表映射HBase表

 

1.文章来源:

http://blog.csdn.net/jiedushi/article/details/7325292

http://www.cr173.com/html/24339_1.html

2.基本介绍

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
Hive
HBase的整合功能的实现是利用两者本身对外的API接口互相进行通信,相互通信主要是依靠hive_hbase-handler.jar工具类, 大致意思如图所示:

3.软件版本

使用的软件版本:(没有下载地址的百度中找就行)

jdk-6u24-linux-i586.bin    

hive-0.9.0.tar.gz           http://yun.baidu.com/share/link?shareid=2138315647&uk=1614030671

hbase-0.94.14.tar.gz    http://mirror.bit.edu.cn/apache/hbase/hbase-0.94.14/

hadoop-1.1.2.tar.gz      http://pan.baidu.com/s/1mgmKfsG

4.安装位置

安装目录:/usr/local/     (记得解压后重命名一下哦)
Hbase
的安装路径为:/usr/local/hbase

 Hive的安装路径为:/usr/local/hive

5.整合步骤

整合hivehbase的过程如下:

1. /usr/local/hbase-0.90.4下:

hbase-0.94.14.jarhbase-0.94.14-tests.jar lib/zookeeper-3.4.5.jar拷贝到/usr/local /hive/lib文件夹下面
注意:

如果hive/lib下已经存在这两个文件的其他版本(例如zookeeper-3.3.1.jar

建议删除后使用hbase下的相关版本

还需要

protobuf-java-2.4.0a.jar拷贝到/usr/local/hive/lib/usr/local/hadoop/lib

2.修改hive-site.xml文件

/usr/local/hive/conf下目录下,在hive-site.xml最底部添加如下内容:

(跳转到最下面的linux命令:按住Esc + 冒号 + $  然后回车) <property>
 <name>hive.querylog.location</name>
 <value>/usr/local/hive/logs</value>
 </property>
 <property>
 <name>hive.aux.jars.path</name> 
注意:如果不存在则自行创建,或者把文件改名后使用。拷贝到所有节点包括的下。拷贝下的文件到所有节点包括的下。

注意,如果3,4两步跳过的话,运行hive时很可能出现如下错误:
org.apache.hadoop.hbase.ZooKeeperConnectionException: HBase is able to connect to ZooKeeper but the connection closes immediately.
This could be a sign that the server has too many connections (30 is the default). Consider inspecting your ZK server logs for that error and
then make sure you are reusing HBaseConfiguration as often as you can. See HTable's javadoc for more information. at org.apache.hadoop.
hbase.zookeeper.ZooKeeperWatcher.

启动hive (测试成功)
单节点启动
bin/hive -hiveconf hbase.master=master:60000
集群启动   (这个我没测试)
bin/hive -hiveconf hbase.zookeeper.quorum=node1,node2,node3   (
所有的zookeeper节点)
如果hive-site.xml文件中没有配置hive.aux.jars.path,则可以按照如下方式启动。
hive --auxpath /opt/mapr/hive/hive-0.7.1/lib/hive-hbase-handler-0.7.1.jar,/opt/mapr/hive/hive-0.7.1/lib/hbase-0.90.4.jar,/opt/mapr/hive/hive-0.7.1/lib/zookeeper-3.3.2.jar -hiveconf hbase.master=localhost:60000

经测试修改hive的配置文件hive-site.xml

<property>
  <name>hive.zookeeper.quorum</name>
  <value>node1,node2,node3</value>
  <description>The list of zookeeper servers to talk to. This is only needed for read/write locks.</description>
</property>

不用增加参数启动hive就可以联合hbase

 

6.测试hivehbase

启动后进行测试(重启一下集群)

1.  hive创建hbase能识别的表

语句如下:

create table hbase_table_1(key int, value string)

stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'

with serdeproperties ("hbase.columns.mapping" = ":key,cf1:val")

tblproperties ("hbase.table.name" = "xyz");

此刻你进入hbase shell中发现多了一张表 ‘xyz’
可以先跳过这句话hbase.table.name 定义在hbasetable名称,

多列时:data:1data:2;多列族时:data1:1,data2:1;)
hbase.columns.mapping 定义在hbase的列族,里面的:key 是固定值而且要保证在表pokes中的foo字段是唯一值

创建有分区的表

create table hbase_table_1(key int, value string) 

partitioned by (day string)

stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'

with serdeproperties ("hbase.columns.mapping" = ":key,cf1:val")

tblproperties ("hbase.table.name" = "xyz");

不支持表的修改
会提示不能修改非本地表。
hive> ALTER TABLE hbase_table_1 ADD PARTITION (day = '2012-09-22');
FAILED: Error in metadata: Cannot use ALTER TABLE on a non-native table FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask 

 

2.  导入数据到关联hbase的表中去

1.hive中新建一张中间表

create table pokes(foo int,bar string)

row format delimited fields terminated by ',';
批量导入数据
load data local inpath '/home/1.txt' overwrite into table pokes;

1.txt文件的内容为 
1,hello 
2,pear 
3,world

使用sql导入hbase_table_1

set hive.hbase.bulk=true;

2.插入数据到hbase表中去

insert overwrite table hbase_table_1

select * from pokes;

导入有分区的表

insert overwrite table hbase_table_1  partition (day='2012-01-01') 

select * from pokes;

3.查看关联hbase的那张表

hive> select * from hbase_table_1;
OK
1 hello
2 pear
3 world

(注:与hbase整合的有分区的表存在个问题  select * from table查询不到数据,select key,value from table可以查到数据)

4.登录hbase查看那张表的数据

hbase shell

hbase(main):002:0> describe 'xyz' 
DESCRIPTION ENABLED {NAME => 'xyz', FAMILIES => [{NAME => 'cf1', BLOOMFILTER => 'NONE', REPLICATION_S true 
COPE => '0', COMPRESSION => 'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSI 
ZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}]} 
1 row(s) in 0.0830 seconds
hbase(main):003:0> scan 'xyz'
ROW COLUMN+CELL 
1 column=cf1:val, timestamp=1331002501432, value=hello 
2 column=cf1:val, timestamp=1331002501432, value=pear 
3 column=cf1:val, timestamp=1331002501432, value=world

这时在Hbase中可以看到刚才在hive中插入的数据了。

7.测试hbasehive

1.hbase中创建表

create 'test1','a','b','c'

put 'test1','1','a','qqq'

put 'test1','1','b','aaa'

put 'test1','1','c','bbb'

put 'test1','2','a','qqq'

put 'test1','2','c','bbb'

2.hbase中的表关联到hive

对于在hbase已经存在的表,在hive中使用CREATE EXTERNAL TABLE来建立
例如hbase中的表名称为test1,字段为 a: , b: ,c: hive中建表语句为

create external table hive_test

(key int,gid map<string,string>,sid map<string,string>,uid map<string,string>)

stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'

with serdeproperties ("hbase.columns.mapping" ="a:,b:,c:") 

tblproperties  ("hbase.table.name" = "test1");

2.检查test1中的数据

hive中建立好表后,查询hbasetest1表内容
select * from hive_test;

OK
1 {"":"qqq"} {"":"aaa"} {"":"bbb"}
2 {"":"qqq"} {} {"":"bbb"}

查询gid字段中value值的方法为
select gid[''] from hive_test;
得到查询结果
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201203052222_0017, Tracking URL = 
http://localhost:50030/jobdetails.jsp?jobid=job_201203052222_0017
Kill Command = /opt/mapr/hadoop/hadoop-0.20.2/bin/../bin/hadoop job -Dmapred.job.tracker=maprfs:/// -kill job_201203052222_0017
2012-03-06 14:38:29,141 Stage-1 map = 0%, reduce = 0%
2012-03-06 14:38:33,171 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201203052222_0017
OK
qqq
qqq

如果hbasetest1中的字段为user:gid,user:sid,info:uid,info:level,在hive中建表语句为
create external table hive_test

(key int,user map<string,string>,info map<string,string>)

stored by 'org.apache.hadoop.hive.hbase.hbasestoragehandler'

with serdeproperties ("hbase.columns.mapping" ="user:,info:") 

tblproperties  ("hbase.table.name" = "test1");

查询hbase表的方法为
select user['gid'] from hive_test;

 注:hive连接hbase优化,将HADOOP_HOME/conf中的hbase-site.xml文件中增加配置

 <property>
   <name>hbase.client.scanner.caching</name>
   <value>10000</value>
 </property>

或者在执行hive语句之前执行hive>set hbase.client.scanner.caching=10000;

报错:

Hive报错

1.NoClassDefFoundError
Could not initialize class java.lang.NoClassDefFoundError: Could not initialize class org.apache.hadoop.hbase.io.HbaseObjectWritable
protobuf-***.jar添加到jars路径

//$HIVE_HOME/conf/hive-site.xml

<property>

   <name>hive.aux.jars.path</name>

   <value>file:///data/hadoop/hive-0.10.0/lib/hive-hbase-handler-0.10.0.jar,file:///data/hadoop/hive-0.10.0/lib/hbase-0.94.8.jar,file:///data/hadoop/hive-0.10.0/lib/zookeeper-3.4.5.jar,file:///data/hadoop/hive-0.10.0/lib/guava-r09.jar,file:///data/hadoop/hive-0.10.0/lib/hive-contrib-0.10.0.jar,file:///data/hadoop/hive-0.10.0/lib/protobuf-java-2.4.0a.jar</value>

</property>

 

 

Hbase 报错

:java.lang.NoClassDefFoundError: com/google/protobuf/Message  

编个Hbase程序,系统提示错误,java.lang.NoClassDefFoundError: com/google/protobuf/Message

找了半天,从这个地方发现了些东西:http://abloz.com/2012/06/15/hive-execution-hbase-create-the-table-can-not-find-protobuf.html

 

内容如下:

hadoop:1.0.3

hive:0.9.0

hbase:0.94.0

protobuf:$HBASE_HOME/lib/protobuf-java-2.4.0a.jar

可以看到,0.9.0hive里面自带的hbasejar0.92版本的。

[zhouhh@Hadoop48 ~]$ hive –auxpath $HIVE_HOME/lib/hive-hbase-handler-0.9.0.jar,$HIVE_HOME/lib/hbase-0.92.0.jar,$HIVE_HOME/lib/zookeeper-3.3.4.jar,$HIVE_HOME/lib/guava-r09.jar,$HBASE_HOME/lib/protobuf-java-2.4.0a.jar

hive> CREATE TABLE hbase_table_1(key int, value string)

> STORED BY ‘org.apache.hadoop.hive.hbase.HBaseStorageHandler’

> WITH SERDEPROPERTIES (“hbase.columns.mapping” = “:key,cf1:val”)

> TBLPROPERTIES (“hbase.table.name” = “xyz”);

java.lang.NoClassDefFoundError: com/google/protobuf/Message

at org.apache.hadoop.hbase.io.HbaseObjectWritable.(HbaseObjectWritable.java

Caused by: java.lang.ClassNotFoundException: com.google.protobuf.Message

解决办法:

$HBASE_HOME/lib/protobuf-java-2.4.0a.jar 拷贝到 $HIVE_HOME/lib/.

[zhouhh@Hadoop48 ~]$ cp /home/zhouhh/hbase-0.94.0/lib/protobuf-java-2.4.0a.jar $HIVE_HOME/lib/.

hive> CREATE TABLE hbase_table_1(key int, value string)

> STORED BY ‘org.apache.hadoop.hive.hbase.HBaseStorageHandler’

> WITH SERDEPROPERTIES (“hbase.columns.mapping” = “:key,cf1:val”)

> TBLPROPERTIES (“hbase.table.name” = “xyz”);

OK

Time taken: 10.492 seconds

hbase(main):002:0> list ‘xyz’

TABLE

xyz

1 row(s) in 0.0640 seconds

 

在引用 jar包中包含protobuf-java-2.4.0a.jar即可。

 

 

测试脚本

bin/hive -hiveconf hbase.master=master:60000

 

hive --auxpath /usr/local/hive/lib/hive-hbase-handler-0.9.0.jar,/usr/local/hive/lib/hbase-0.94.7-security.jar,/usr/local/hive/lib/zookeeper-3.4.5.jar -hiveconf hbase.master=localhost:60000

 

<property>

 <name>hive.aux.jars.path</name>

<value>file:///usr/local/hive/lib/hive-hbase-handler-0.9.0.jar,file:///usr/local/hive/lib/hbase-0.94.7-security.jar,file:///usr/local/hive/lib/zookeeper-3.4.5.jar</value>

</property>

 

1 nana

2 hehe

3 xixi

hadoop dfsadmin -safemode leave

 

/home/hadoop

 

create table hbase_table_1(key int, value string) 

stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' 

with serdeproperties ("hbase.columns.mapping" = ":key,cf1:val") 

tblproperties ("hbase.table.name" = "xyz");

 

 

drop table pokes;

create table pokes

(id int,name string)

row format delimited fields terminated by ' '

stored as textfile;

load data local inpath '/home/hadoop/kv1.txt' overwrite into table pokes;

 

insert into table hbase_table_1

select * from pokes; 

 

 

 

create external table hive_test

(key int,gid map<string,string>,sid map<string,string>,uid map<string,string>)

stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'

with serdeproperties ("hbase.columns.mapping" ="a:,b:,c:") 

tblproperties  ("hbase.table.name" = "test1");

 

© 著作权归作者所有

开拓者-2017
粉丝 38
博文 150
码字总数 301555
作品 0
大兴
程序员
私信 提问
hive与hbase数据交互的详解指南 | ApacheCN(apache中文网)

HBase和Hive的集成原理 ApacheCN | apache中文网 Hive和Hbase有各自不同的特征:hive是高延迟、结构化和面向分析的,hbase是低延迟、非结构化和面向编程的。Hive数据仓库在hadoop上是高延迟...

片刻
2014/06/28
1.5W
0
学习Hadoop资料分享

最近一直在学习Hadoop,没办法,工作需要,最近在网上收集资料时,看到了一个课程,叫Cloudera Hadoop 4系列实战课程(电商业日志流量分析项目),把课程内容的大概给大家看一下,有40课时,看...

adiykk
2013/06/19
968
5
Hive 数据导入HBase的2种方法详解

最近经常被问到这个问题,所以简单写一下总结。 Hive数据导入到HBase基本有2个方案: 1、HBase中建表,然后Hive中建一个外部表,这样当Hive中写入数据后,HBase中也会同时更新 2、MapReduce...

王二铁
2015/08/27
1.2W
0
关于学习Hadoop中未总结的资料

1)Cygwin相关资料   (1)Cygwin上安装、启动ssh服务失败、ssh localhost失败的解决方案   地址:http://blog.163.com/pwcrab/blog/static/16990382220107267443810/   (2)windows...

Carl_
2015/06/25
49
0
HIVE和HBASE之间,主要的区别是什么?

  【IT168 评论】Apache Hive是一个构建在hadoop基础设施之上的数据仓库。通过Hive可以使用HQL语言查询存放在HDFS上的数据。HQL是一种类SQL语言,这种语言最终被转化为Map/Reduce. 虽然Hiv...

中国大数据
2018/05/18
0
0

没有更多内容

加载失败,请刷新页面

加载更多

应急广播户户通平台

一、平台概述 应急广播户户通平台为软硬一体化广播服务解决方案。实现了应急广播、视音频及图片文字信息、调频及数字广播FM、天气预报信息接收功能,以及视音频播放、智能机器人、电子日历等...

neocean
35分钟前
47
0
如何为Apache 2.2启用mod_rewrite

我已经在我的Vista机器上安装了新的Apache 2.2,一切正常,除了mod重写。 我没有注释 LoadModule rewrite_module modules/mod_rewrite.s 但是我的重写规则都没有,即使是简单的重写规则 Re...

javail
41分钟前
23
0
移除Python unicode字符串中的重音符号的最佳方法是什么?

我在Python中有一个Unicode字符串,我想删除所有的重音符号(变音符号)。 我在网上发现了一种用Java实现此目的的优雅方法: 将Unicode字符串转换为长规范化格式(带有单独的字母和变音符号)...

技术盛宴
57分钟前
48
0
ActiveMQ学习之SpringBoot整合ActiveMQ------>主题生产者和消费者

一、pom <!--聚合工程集成关系--> <!--统一整合第三方框架依赖信息--> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</a......

冥焱
今天
89
0
两周自制脚本语言-第11天 优化变量读写性能

第11天 优化变量读写性能 以变量值的读写为例,向读者介绍基于这种理念的语言处理器性能优化方式。 11.1 通过简单数组来实现环境 假如函数包含局部变量x与y,程序可以事先将x设为数组的第0个...

果汁分你一半
今天
58
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部