环境
Hadoop
版本:Apache Hadoop 2.6.3
ZooKeeper
版本:ZooKeeper 3.4.10
- 两个
ResourceManager
节点:主节点RM01
,从节点RM02
背景
最近有一次我们的Hadoop
监控平台发出ResourceManager
(以下简称RM
)崩溃的报警信息,于是我们分析了RM
的日志和ZooKeeper
服务端(以下简称ZK
)的日志,异常日志信息分别如下:
RM日志
RM01
的异常日志如下:
2019-03-03 02:33:01,826 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Retrying operation on ZK. Retry no. 999
2019-03-03 02:33:02,088 INFO org.apache.zookeeper.ClientCnxn: Opening socket connection to server 10.204.245.44/10.204.245.44:5181. Will not attempt to authenticate using SASL (unknown error)
2019-03-03 02:33:02,089 INFO org.apache.zookeeper.ClientCnxn: Socket connection established to 10.204.245.44/10.204.245.44:5181, initiating session
2019-03-03 02:33:02,090 INFO org.apache.zookeeper.ClientCnxn: Session establishment complete on server 10.204.245.44/10.204.245.44:5181, sessionid = 0x1690d678e9448da, negotiated timeout = 60000
2019-03-03 02:33:02,101 WARN org.apache.zookeeper.ClientCnxn: Session 0x1690d678e9448da for server 10.204.245.44/10.204.245.44:5181, unexpected error, closing socket connection and attempting reconnect
java.io.IOException: Broken pipe
at sun.nio.ch.FileDispatcherImpl.write0(Native Method)
at sun.nio.ch.SocketDispatcher.write(SocketDispatcher.java:47)
at sun.nio.ch.IOUtil.writeFromNativeBuffer(IOUtil.java:93)
at sun.nio.ch.IOUtil.write(IOUtil.java:65)
at sun.nio.ch.SocketChannelImpl.write(SocketChannelImpl.java:471)
at org.apache.zookeeper.ClientCnxnSocketNIO.doIO(ClientCnxnSocketNIO.java:117)
at org.apache.zookeeper.ClientCnxnSocketNIO.doTransport(ClientCnxnSocketNIO.java:366)
at org.apache.zookeeper.ClientCnxn$SendThread.run(ClientCnxn.java:1081)
2019-03-03 02:33:02,201 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Exception while executing a ZK operation.
org.apache.zookeeper.KeeperException$ConnectionLossException: KeeperErrorCode = ConnectionLoss for /bi-rmstore/ZKRMStateRoot/RMAppRoot/application_1551528254601_0725/appattempt_1551528254601_0725_000001
at org.apache.zookeeper.KeeperException.create(KeeperException.java:99)
at org.apache.zookeeper.KeeperException.create(KeeperException.java:51)
at org.apache.zookeeper.ZooKeeper.exists(ZooKeeper.java:1045)
at org.apache.zookeeper.ZooKeeper.exists(ZooKeeper.java:1073)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$9.run(ZKRMStateStore.java:1058)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$9.run(ZKRMStateStore.java:1055)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$ZKAction.runWithCheck(ZKRMStateStore.java:1128)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$ZKAction.runWithRetries(ZKRMStateStore.java:1161)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore.existsWithRetries(ZKRMStateStore.java:1055)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore.updateApplicationAttemptStateInternal(ZKRMStateStore.java:712)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$UpdateAppAttemptTransition.transition(RMStateStore.java:243)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$UpdateAppAttemptTransition.transition(RMStateStore.java:226)
at org.apache.hadoop.yarn.state.StateMachineFactory$SingleInternalArc.doTransition(StateMachineFactory.java:362)
at org.apache.hadoop.yarn.state.StateMachineFactory.doTransition(StateMachineFactory.java:302)
at org.apache.hadoop.yarn.state.StateMachineFactory.access$300(StateMachineFactory.java:46)
at org.apache.hadoop.yarn.state.StateMachineFactory$InternalStateMachine.doTransition(StateMachineFactory.java:448)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore.handleStoreEvent(RMStateStore.java:812)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$ForwardingEventHandler.handle(RMStateStore.java:872)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$ForwardingEventHandler.handle(RMStateStore.java:867)
at org.apache.hadoop.yarn.event.AsyncDispatcher.dispatch(AsyncDispatcher.java:182)
at org.apache.hadoop.yarn.event.AsyncDispatcher$1.run(AsyncDispatcher.java:109)
at java.lang.Thread.run(Thread.java:745)
2019-03-03 02:33:02,201 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Maxed out ZK retries. Giving up!
2019-03-03 02:33:02,201 ERROR org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore: Error updating appAttempt: appattempt_1551528254601_0725_000001
org.apache.zookeeper.KeeperException$ConnectionLossException: KeeperErrorCode = ConnectionLoss for /bi-rmstore/ZKRMStateRoot/RMAppRoot/application_1551528254601_0725/appattempt_1551528254601_0725_000001
at org.apache.zookeeper.KeeperException.create(KeeperException.java:99)
at org.apache.zookeeper.KeeperException.create(KeeperException.java:51)
at org.apache.zookeeper.ZooKeeper.exists(ZooKeeper.java:1045)
at org.apache.zookeeper.ZooKeeper.exists(ZooKeeper.java:1073)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$9.run(ZKRMStateStore.java:1058)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$9.run(ZKRMStateStore.java:1055)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$ZKAction.runWithCheck(ZKRMStateStore.java:1128)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$ZKAction.runWithRetries(ZKRMStateStore.java:1161)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore.existsWithRetries(ZKRMStateStore.java:1055)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore.updateApplicationAttemptStateInternal(ZKRMStateStore.java:712)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$UpdateAppAttemptTransition.transition(RMStateStore.java:243)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$UpdateAppAttemptTransition.transition(RMStateStore.java:226)
at org.apache.hadoop.yarn.state.StateMachineFactory$SingleInternalArc.doTransition(StateMachineFactory.java:362)
at org.apache.hadoop.yarn.state.StateMachineFactory.doTransition(StateMachineFactory.java:302)
at org.apache.hadoop.yarn.state.StateMachineFactory.access$300(StateMachineFactory.java:46)
at org.apache.hadoop.yarn.state.StateMachineFactory$InternalStateMachine.doTransition(StateMachineFactory.java:448)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore.handleStoreEvent(RMStateStore.java:812)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$ForwardingEventHandler.handle(RMStateStore.java:872)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$ForwardingEventHandler.handle(RMStateStore.java:867)
at org.apache.hadoop.yarn.event.AsyncDispatcher.dispatch(AsyncDispatcher.java:182)
at org.apache.hadoop.yarn.event.AsyncDispatcher$1.run(AsyncDispatcher.java:109)
at java.lang.Thread.run(Thread.java:745)
2019-03-03 02:33:02,201 ERROR org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore: State store operation failed
org.apache.zookeeper.KeeperException$ConnectionLossException: KeeperErrorCode = ConnectionLoss for /bi-rmstore/ZKRMStateRoot/RMAppRoot/application_1551528254601_0725/appattempt_1551528254601_0725_000001
at org.apache.zookeeper.KeeperException.create(KeeperException.java:99)
at org.apache.zookeeper.KeeperException.create(KeeperException.java:51)
at org.apache.zookeeper.ZooKeeper.exists(ZooKeeper.java:1045)
at org.apache.zookeeper.ZooKeeper.exists(ZooKeeper.java:1073)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$9.run(ZKRMStateStore.java:1058)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$9.run(ZKRMStateStore.java:1055)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$ZKAction.runWithCheck(ZKRMStateStore.java:1128)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore$ZKAction.runWithRetries(ZKRMStateStore.java:1161)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore.existsWithRetries(ZKRMStateStore.java:1055)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore.updateApplicationAttemptStateInternal(ZKRMStateStore.java:712)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$UpdateAppAttemptTransition.transition(RMStateStore.java:243)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$UpdateAppAttemptTransition.transition(RMStateStore.java:226)
at org.apache.hadoop.yarn.state.StateMachineFactory$SingleInternalArc.doTransition(StateMachineFactory.java:362)
at org.apache.hadoop.yarn.state.StateMachineFactory.doTransition(StateMachineFactory.java:302)
at org.apache.hadoop.yarn.state.StateMachineFactory.access$300(StateMachineFactory.java:46)
at org.apache.hadoop.yarn.state.StateMachineFactory$InternalStateMachine.doTransition(StateMachineFactory.java:448)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore.handleStoreEvent(RMStateStore.java:812)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$ForwardingEventHandler.handle(RMStateStore.java:872)
at org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore$ForwardingEventHandler.handle(RMStateStore.java:867)
at org.apache.hadoop.yarn.event.AsyncDispatcher.dispatch(AsyncDispatcher.java:182)
at org.apache.hadoop.yarn.event.AsyncDispatcher$1.run(AsyncDispatcher.java:109)
at java.lang.Thread.run(Thread.java:745)
2019-03-03 02:33:03,074 INFO org.apache.zookeeper.ZooKeeper: Session: 0x1690d678e9448da closed
2019-03-03 02:33:03,074 INFO org.apache.hadoop.yarn.event.AsyncDispatcher: AsyncDispatcher is draining to stop, igonring any new events.
2019-03-03 02:33:03,074 INFO org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptImpl: appattempt_1551528254601_0723_000001 State change from RUNNING to FINAL_SAVING
2019-03-03 02:33:03,074 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Ignore watcher event type: None with state:Disconnected for path:null from old session
2019-03-03 02:33:03,074 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Ignore watcher event type: None with state:SyncConnected for path:null from old session
2019-03-03 02:33:03,074 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Ignore watcher event type: None with state:Disconnected for path:null from old session
2019-03-03 02:33:03,074 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Ignore watcher event type: None with state:SyncConnected for path:null from old session
2019-03-03 02:33:03,074 WARN org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore: State-store fenced ! Transitioning RM to standby
RM02
的异常日志如下:
2019-03-05 12:10:24,634 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Retrying operation on ZK. Retry no. 124
2019-03-05 12:10:25,447 INFO org.apache.zookeeper.ClientCnxn: Opening socket connection to server 10.204.245.45/10.204.245.45:5181. Will not attempt to authenticate using SASL (unknown error)
2019-03-05 12:10:25,447 INFO org.apache.zookeeper.ClientCnxn: Socket connection established to 10.204.245.45/10.204.245.45:5181, initiating session
2019-03-05 12:10:25,449 INFO org.apache.zookeeper.ClientCnxn: Session establishment complete on server 10.204.245.45/10.204.245.45:5181, sessionid = 0x1693f9adb5401ae, negotiated timeout = 60000
2019-03-05 12:10:26,704 WARN org.apache.zookeeper.ClientCnxn: Session 0x1693f9adb5401ae for server 10.204.245.45/10.204.245.45:5181, unexpected error, closing socket connection and attempting reconnect
java.lang.OutOfMemoryError: Java heap space
at java.util.Arrays.copyOf(Arrays.java:3236)
at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118)
at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:135)
at java.io.DataOutputStream.writeInt(DataOutputStream.java:197)
at org.apache.jute.BinaryOutputArchive.writeInt(BinaryOutputArchive.java:55)
at org.apache.zookeeper.proto.SetDataRequest.serialize(SetDataRequest.java:59)
at org.apache.zookeeper.MultiTransactionRecord.serialize(MultiTransactionRecord.java:77)
at org.apache.zookeeper.ClientCnxn$Packet.createBB(ClientCnxn.java:292)
at org.apache.zookeeper.ClientCnxnSocketNIO.doIO(ClientCnxnSocketNIO.java:115)
at org.apache.zookeeper.ClientCnxnSocketNIO.doTransport(ClientCnxnSocketNIO.java:366)
at org.apache.zookeeper.ClientCnxn$SendThread.run(ClientCnxn.java:1081)
以上是两个RM
节点的日志,可以忽略时间点,3月3号
和3月5号
发生异常的轨迹类似,异常发生的过程如下:
1、我们在yarn-site.xml
配置了yarn.resourcemanager.store.class
这个属性的值为org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore
,也就是说,RM
会将它的状态信息保存到ZK
中,与此属性相关的,还有如下两个重要属性:
yarn.resourcemanager.zk-num-retries
:表示RM
与ZK
的连接丢失后,尝试与ZK
建立连接的次数,我们线上默认是1000
yarn.resourcemanager.zk-retry-interval-ms
:尝试连接ZK
的时间间隔,我们线上默认是1000
毫秒,也就是1
秒
基于以上配置,在RM
与ZK
连接失败后,每隔1
秒RM
就会尝试与ZK
建立连接,直到达到最大重试次数,因此,从第一段日志我们可以看出如下日志轨迹:
(1)主节点RM01
上的RM
向ZK
的/bi-rmstore
节点中写数据发生异常,返回连接丢失错误码KeeperErrorCode=ConnectionLoss
:
2019-03-03 02:33:02,201 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Exception while executing a ZK operation.
org.apache.zookeeper.KeeperException$ConnectionLossException: KeeperErrorCode = ConnectionLoss for /bi-rmstore/ZKRMStateRoot/RMAppRoot/application_1551528254601_0725/appattempt_1551528254601_0725_000001
(2)RM
接收到连接丢失的错误码,按照重试逻辑进行重试,一直重试到999
次,按照重试间隔时间,这期间花了至少999
秒,也就是至少15
分钟:
2019-03-03 02:33:01,826 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Retrying operation on ZK. Retry no. 999
(3)重试到第999
次,还是连接丢失,那么,进行第1000
次重试,但是,这个时候已经达到最大重试次数限制了,于是RM
就打印达到最大重试次数、保存状态失败的信息:
2019-03-03 02:33:02,201 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Maxed out ZK retries. Giving up!
2019-03-03 02:33:02,201 ERROR org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore: State store operation failed
(4)主节点的RM
发现自己怎么向ZK
中写数据都写不进去,于是就标识自己出了问题,接着开始故障转移,将请求转移到RM02
服务器,也就是从节点上,此时RM
发生了主从切换:
2019-03-03 02:33:03,074 WARN org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore: State-store fenced ! Transitioning RM to standby
(5)因为发生了主从切换,从节点RM02
此时是主节点。它切换完成后,也立即执行RM01
上没有完成的操作,也就是往ZK
写数据,但是也写不进去,最后重试到124
次的时候,发生了JVM
堆内存溢出异常:
2019-03-05 12:10:24,634 INFO org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore: Retrying operation on ZK. Retry no. 124
java.lang.OutOfMemoryError: Java heap space
堆内存溢出异常发生的原因一般是JVM
的堆内存区域中有很多存活的对象,然后一个新对象申请不到所需的堆内存时,就会发生此类异常。
(6)此时,RM02
内存溢出了,但是它自己进程没有退出,也没有故障转移,受影响的是90
个NodeManager
,它们发现连接不到RM
了,就自己挂掉了,于是整个集群挂了。在整个故障发生过程中,我们可能会有一个疑问——为什么RM
向ZK
写数据写不进去?这个问题要结合ZK
日志来分析,先抓住一个点,那就是发生内存溢出异常的代码位置:
java.lang.OutOfMemoryError: Java heap space
at java.util.Arrays.copyOf(Arrays.java:3236)
at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118)
at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:135)
at java.io.DataOutputStream.writeInt(DataOutputStream.java:197)
at org.apache.jute.BinaryOutputArchive.writeInt(BinaryOutputArchive.java:55)
at org.apache.zookeeper.proto.SetDataRequest.serialize(SetDataRequest.java:59)
at org.apache.zookeeper.MultiTransactionRecord.serialize(MultiTransactionRecord.java:77)
at org.apache.zookeeper.ClientCnxn$Packet.createBB(ClientCnxn.java:292)
at org.apache.zookeeper.ClientCnxnSocketNIO.doIO(ClientCnxnSocketNIO.java:115)
at org.apache.zookeeper.ClientCnxnSocketNIO.doTransport(ClientCnxnSocketNIO.java:366)
at org.apache.zookeeper.ClientCnxn$SendThread.run(ClientCnxn.java:1081)
在这里,重点关注org.apache.zookeeper.proto.SetDataRequest.serialize
这个位置的代码,经过查看源码可以知道,这是ZK
客户端往服务端写数据时,执行的正常序列化操作,也可以从serialize
这个方法名字看出来该方法的作用,关键是写了多大的数据给ZK
。接下来我们来看看ZK
日志。
ZK日志
ZK
日志如下:
2019-03-05 12:59:46,158 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:5181:NIOServerCnxnFactory@197] - Accepted socket connection from /10.216.2.25:41586
2019-03-05 12:59:46,160 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:5181:ZooKeeperServer@966] - Client attempting to renew session 0x2690d678e98ae8b at /10.216.2.25:41586
2019-03-05 12:59:46,160 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:5181:Learner@108] - Revalidating client: 0x2690d678e98ae8b
2019-03-05 12:59:46,161 [myid:1] - INFO [QuorumPeer[myid=1]/0:0:0:0:0:0:0:0:5181:ZooKeeperServer@712] - Established session 0x2690d678e98ae8b with negotiated timeout 60000 for client /10.216.2.25:41586
2019-03-05 12:59:46,167 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:5181:ZooKeeperServer@997] - got auth packet /10.216.2.25:41586
2019-03-05 12:59:46,167 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:5181:ZooKeeperServer@1031] - auth success /10.216.2.25:41586
2019-03-05 12:59:46,177 [myid:1] - WARN [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:5181:NIOServerCnxn@380] - Exception causing close of session 0x2690d678e98ae8b due to java.io.IOException: Len error 1788046
2019-03-05 12:59:46,177 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:5181:NIOServerCnxn@1091] - Closed socket connection for client /10.216.2.25:41586 which had sessionid 0x2690d678e98ae8b
在ZK
日志中,我们可以看到ZK Server
接收到来自10.216.2.25:41586(RM01)
进程的连接请求,最后发生了异常关闭了session
,重点关注如下日志片段:
2019-03-05 12:59:46,177 [myid:1] - WARN [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:5181:NIOServerCnxn@380] - Exception causing close of session 0x2690d678e98ae8b due to java.io.IOException: Len error 1788046
2019-03-05 12:59:46,177 [myid:1] - INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:5181:NIOServerCnxn@1091] - Closed socket connection for client /10.216.2.25:41586 which had sessionid 0x2690d678e98ae8b
以上日志显示ZK
接收到一个1788046
字节(1.7MB
)的数据,接着发生了异常,最后关闭了session
。在ZK
的配置中,有一个jute.maxbuffer
参数,这个参数是个全局参数,定义了每个ZNode
节点所能存储的最大数据量,以字节为单位,默认为1048576
字节,也就是说,默认情况下,ZK
规定它的每个ZNode
只能存储1兆
数据。在这里,YARN
集群的RM
节点给ZK
发送了一个1.7MB
的数据,ZK
判断这个数据超过了它所限制的最大数据量,因此就抛出了Len error 1788046
的异常,最后直接关闭了session
,给客户端返回了KeeperErrorCode=ConnectionLoss
连接丢失错误码。
在这里,我们基本上清楚了两个RM
为什么向ZK
写数据写不进去了。还有一个问题,为什么会发生JVM
内存溢出呢?这个问题的原因不在于ZK
写数据异常,在于以下代码,接下来进行代码剖析。
YARN读写ZK代码
以下代码摘自org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore
类的保存状态和重试逻辑部分,具体细节见注释。先看下保存应用状态的逻辑:
@Override
public synchronized void updateApplicationStateInternal(ApplicationId appId,
ApplicationStateData appStateDataPB) throws Exception {
String nodeUpdatePath = getNodePath(rmAppRoot, appId.toString());
if (LOG.isDebugEnabled()) {
LOG.debug("Storing final state info for app: " + appId + " at: "
+ nodeUpdatePath);
}
// RM状态字节数组
byte[] appStateData = appStateDataPB.getProto().toByteArray();
// 调用重试逻辑写数据
if (existsWithRetries(nodeUpdatePath, true) != null) {
setDataWithRetries(nodeUpdatePath, appStateData, -1);
} else {
createWithRetries(nodeUpdatePath, appStateData, zkAcl,
CreateMode.PERSISTENT);
LOG.debug(appId + " znode didn't exist. Created a new znode to"
+ " update the application state.");
}
}
该段代码最终会调用以下重试逻辑:
T runWithRetries() throws Exception {
int retry = 0; // 保存重试次数
while (true) {
try {
return runWithCheck();
} catch (KeeperException.NoAuthException nae) {
if (HAUtil.isHAEnabled(getConfig())) {
// NoAuthException possibly means that this store is fenced due to
// another RM becoming active. Even if not,
// it is safer to assume we have been fenced
throw new StoreFencedException();
}
} catch (KeeperException ke) {
if (ke.code() == Code.NODEEXISTS) {
LOG.info("znode already exists!");
return null;
}
LOG.info("Exception while executing a ZK operation.", ke);
retry++; // 累计重试次数
/**
* 在未达到最大重试次数的条件的下,根据ZK Server返回的错误码执行不同的重试策略
*/
if (shouldRetry(ke.code()) && retry < numRetries) { // 如果ZK Server返回的错误码为连接丢失、连接超时,则直接进行重试
LOG.info("Retrying operation on ZK. Retry no. " + retry);
Thread.sleep(zkRetryInterval);
continue;
}
if (shouldRetryWithNewConnection(ke.code()) && retry < numRetries) { // 如果ZK Server返回的错误码为会话丢失、会话转移,则创建连接后进行重试
LOG.info("Retrying operation on ZK with new Connection. " +
"Retry no. " + retry);
Thread.sleep(zkRetryInterval);
createConnection();
syncInternal(ke.getPath());
continue;
}
LOG.info("Maxed out ZK retries. Giving up!"); // 达到最大重试次数,放弃重试,抛出异常
throw ke;
}
}
}
以上代码就是RM
读写ZK
失败时的重试逻辑,其中zkRetryInterval
和numRetries
两个变量的值来源于RM
日志部分所列的两个重试配置。
问题原因
总的看来,JVM
内存溢出异常发生的轨迹是这样的,RM
往ZK
写数据,ZK
判断这个数据超过了最大数据量限制,然后就关闭了RM
与ZK
之间的连接。RM
捕捉到ZK
返回的连接丢失状态码,接着进行重试,重试机制是这样的:1秒
重试一次,一直重试到1000
次,最后搞的RM
节点内存溢出了。观察数据发现,内存溢出时YRAN
队列里堆积了200
多个需要执行的任务,并且有几十个在执行,RM
上的JVM
堆内存消耗平时消耗4、5G
,堆最大值6G
。因此内存溢出的原因就是重试次数太多、太频繁,创建了太多对象,导致内存溢出的。
ZK
数据量限制是诱因,重试机制引起的程序循环调用是根源。因为程序运行过程中,抛出了异常,然后在抛出异常的位置执行重试逻辑,重试间隔时间短、频率高,这个时候,方法栈内存和方法在执行过程中引用的堆内存对象也不会被释放,这也间接说明:
-
设置重试策略时,要结合实际情况设置合适的值
-
重试逻辑中的
while(true)
类似于一个死循环,死循环其实是方便了程序员难为了机器,其优点就是易理解,容易编程。这里可以理解为递归调用,递归是用栈机制实现的,每深入一层,都要占去一块栈数据区域,对嵌套层数深的一些算法,递归会力不从心,空间上会以内存崩溃而告终,而且递归也带来了大量的函数调用,这也有许多额外的时间开销
解决方案
在Hadoop YARN jira
YARN-2368中发现,之前也有人碰到过类似的问题,官方也给出了相关的解决方案,但是Hadoop
版本之间有差异,以Apache Hadoop
版本为准:
1、Hadoop 2.9.0以后:
该版本在yarn-site.xml
中增加了yarn.resourcemanager.zk-max-znode-size.bytes
参数,该参数定义了ZK
的ZNode
节点所能存储的最大数据量,以字节为单位,默认是1048576
字节,也就是1MB
。
2、Hadoop 2.9.0以前:
通过在/etc/hadoop/conf/yarn-env.sh
设置-Djute.maxbuffer=<bytes>
参数解决。ZK
在创建客户端连接时,会自动读取jute.maxbuffer
的值。在yarn-env.sh
末尾增加配置如下,这里我设置该值为3145728
字节 ,也就是3MB
:
YARN_OPTS="$YARN_OPTS -Djute.maxbuffer=3145728"
无论采用以上哪一种解决方案,都必须使ZK
客户端配置的值与ZK
服务端的jute.maxbuffer
参数值保持一致,如果要修改,需要同时修改ZK
服务端的jute.maxbuffer
参数,否则在ZK
读写时会发生异常。配置不一致时发生异常如下:
-
ZK
客户端的jute.maxbuffer
参数值大于ZK
服务端的jute.maxbuffer
参数值:客户端向服务端写入的数据量超过服务端配置的值时抛出java.io.IOException: Len error
异常 -
ZK
客户端的jute.maxbuffer
参数值小于ZK
服务端的jute.maxbuffer
参数值:客户端从服务端读取的数据量超过客户端配置的值时抛出java.io.IOException: Unreasonable length
异常
相关思考
- 为什么要限制
ZK
中ZNode
的大小
ZK
是一套高吞吐量的系统,为了提高系统的读取速度,ZK
不允许从文件中读取需要的数据,而是直接从内存中查找。
换句话说,ZK
集群中每一台服务器都包含全量的数据,并且这些数据都会加载到内存中,同时ZNode
的数据不支持Append
操作,全部都是Replace
。
所以从上面分析可以看出,如果ZNode
过大,那么读写某一个ZNode
将造成不确定的延时,同时ZNode
过大,将过快地耗尽ZK
服务器的内存,这也是为什么ZK
不适合存储大量数据的原因。
- 如何提升
ZK
集群的性能
我们说性能,可以从两个方面去考虑:写入的性能与读取的性能。
由于ZK
的写入首先需要通过Leader
,然后这个写入的消息需要传播到半数以上的Follower
通过才能完成整个写入,所以整个集群写入的性能无法通过增加服务器的数量达到目的,相反,整个集群中Follower
数量越多,整个集群写入的性能越差。
ZK
集群中的每一台服务器都可以提供数据的读取服务,所以整个集群中服务器的数量越多,读取的性能就越好,但是Follower
增加又会降低整个集群的写入性能。
- 在生产环境下配置,
jute.maxbuffer
参数的值的设置需要考虑哪些因素
首先,要考虑依赖ZK
的服务数据量多大的问题。ZK
作为一个分布式协调服务,它是要和其他服务整合才能发挥作用的。这里以YARN
为例,YARN
使用ZK
做主备节点之间的故障转移,并且将RM
的状态信息保存到ZK
中。因此这里设置该参数的时候,要考虑这些数据信息有多大,故障转移节点保存的数据量很少,无非是主备节点的IP、host
等信息。状态信息数据量相对来说比较大,RM
将调度过程中产生的应用状态信息都保存到了ZK
中,统计发现,我们现在出问题的YARN
集群节点共有90
个,高峰期任务数是节点数的3
倍,每天调度几千个任务,任务量不是特别大,状态数据信息大部分在几百K
到1M
之间,偶尔会产生2M
的状态数据信息,因此我们将该参数的值调整为3M
。
其次,需要考虑改变该值之后,对其他依赖ZK
的服务有没有影响。生产环境中,依赖ZK
服务的服务有HBase、JStorm
和Hadoop
,理论上,这些服务都要修改各自客户端的该参数值,这是一个很繁琐的工作。目前从每天监控结果来看,其他服务保存在ZK
中的数据,没有超过500K
的,因此不需要改变客户端的该参数值。
最后,还要考虑读写场景和频率,因为数据量太大的话,读写还很多,可能会造成ZK
服务端同步数据慢。
- ZK中保存RM状态的ZNODE会不会越来越大?
不会。在一定条件下,RM
会删除保存在ZK
中的applicationId
对应的状态数据,ZKRMStateStore
中对应的逻辑如下:
public synchronized void removeApplicationStateInternal(ApplicationState appState)
throws Exception {
String appId = appState.getAppId().toString(); // 获取应用ID
String appIdRemovePath = getNodePath(rmAppRoot, appId); // 根据应用ID获取对应的路径
ArrayList<Op> opList = new ArrayList<Op>();
// 执行状态信息删除操作
for (ApplicationAttemptId attemptId : appState.attempts.keySet()) {
String attemptRemovePath = getNodePath(appIdRemovePath, attemptId.toString());
opList.add(Op.delete(attemptRemovePath, -1));
}
opList.add(Op.delete(appIdRemovePath, -1));
if (LOG.isDebugEnabled()) {
LOG.debug("Removing info for app: " + appId + " at: " + appIdRemovePath
+ " and its attempts.");
}
doMultiWithRetries(opList);
}
- YARN为什么使用Protobuf
这是一个额外的话题,引入Protocal Buffer
的一个最大好处——满足向后兼容性。具体原因参考<<YARN/MRv2 RPC框架深入剖析—引入Protocal Buffer的好处>>这篇文章。
参考资料
李亚坤:Hadoop YARN在字节跳动的实践——推荐,总结了头条在YARN
使用和改造方面的经验
ResourceManager failed when ZKRMStateStore tries to update znode data larger than 1MB
Remove jute.maxbuffer limit packetLen in client side
YARN源码分析(三)-----ResourceManager HA之应用状态存储与恢复
源码走读-Yarn-ResourceManager01-基础概念
YARN/MRv2 RPC框架深入剖析—引入Protocal Buffer的好处