文档章节

Python3学习笔记08-闭包、装饰器、内存管理

Corwien
 Corwien
发布于 2016/06/10 02:20
字数 5532
阅读 110
收藏 6

##一、闭包 **闭包(closure)**是函数式编程的重要的语法结构。函数式编程是一种编程范式 (而面向过程编程和面向对象编程也都是编程范式)。在面向过程编程中,我们见到过函数(function);在面向对象编程中,我们见过对象(object)。函数和对象的根本目的是以某种逻辑方式组织代码,并提高代码的可重复使用性(reusability)。闭包也是一种组织代码的结构,它同样提高了代码的可重复使用性。

不同的语言实现闭包的方式不同。Python以函数对象为基础,为闭包这一语法结构提供支持的 (我们在特殊方法与多范式中,已经多次看到Python使用对象来实现一些特殊的语法)。Python一切皆对象,函数这一语法结构也是一个对象。在函数对象中,我们像使用一个普通对象一样使用函数对象,比如更改函数对象的名字,或者将函数对象作为参数进行传递。

###1、函数对象的作用域 和其他对象一样,函数对象也有其存活的范围,也就是函数对象的作用域。函数对象是使用def语句定义的,函数对象的作用域与def所在的层级相同。比如下面代码,我们在 line_conf 函数的隶属范围内定义的函数line,就只能在 line_conf 的隶属范围内调用。

def line_conf():
    def line(x):
        return 2*x+1
    print(line(5))   # within the scope

line_conf()
print(line(5))       # out of the scope

输入图片说明 line函数定义了一条直线(y = 2x + 1)。可以看到,在 line_conf() 中可以调用line函数,而在作用域之外调用line将会有下面的错误:

NameError: name 'line' is not defined

说明这时已经在作用域之外。

同样,如果使用lambda定义函数,那么函数对象的作用域与lambda所在的层级相同。

###2、闭包 函数是一个对象,所以可以作为某个函数的返回结果

def line_conf():
    def line(x):
        return 2*x+1
    return line       # return a function object

my_line = line_conf()
print(my_line(5))

上面的代码可以成功运行。line_conf 的返回结果被赋给line对象。上面的代码将打印11。

如果line()的定义中引用了外部的变量,会发生什么呢?

def line_conf():
    b = 15
    def line(x):
        return 2*x+b
    return line       # return a function object

b = 5
my_line = line_conf()
print(my_line(5))

我们可以看到,line定义的隶属程序块中引用了高层级的变量b,但b信息存在于line的定义之外 (b的定义并不在line的隶属程序块中)。我们称b为line的环境变量。事实上,line作为line_conf 的返回值时,line中已经包括b的取值(尽管b并不隶属于line)。

上面的代码将打印25,也就是说,line所参照的b值是函数对象定义时可供参考的b值,而不是使用时的b值。

一个函数和它的环境变量合在一起,就构成了一个闭包(closure)。在Python中,所谓的闭包是一个包含有环境变量取值的函数对象。环境变量取值被保存在函数对象的**__closure__属性**中。比如下面的代码:

def line_conf():
    b = 15
    def line(x):
        return 2*x+b
    return line       # return a function object

b = 5
my_line = line_conf()
print(my_line.__closure__)
print(my_line.__closure__[0].cell_contents)

__closure__里包含了一个元组(tuple)。这个元组中的每个元素是cell类型的对象。我们看到第一个cell包含的就是整数15,也就是我们创建闭包时的环境变量b的取值。

下面看一个闭包的实际例子:

def line_conf(a, b):
    def line(x):
        return a*x + b
    return line

line1 = line_conf(1, 1)
line2 = line_conf(4, 5)
print(line1(5), line2(5))

这个例子中,函数line与环境变量a,b构成闭包。在创建闭包的时候,我们通过line_conf 的参数a,b说明了这两个环境变量的取值,这样,我们就确定了函数的最终形式(y = x + 1和y = 4x + 5)。我们只需要变换参数a,b,就可以获得不同的直线表达函数。由此,我们可以看到,闭包也具有提高代码可复用性的作用。

如果没有闭包,我们需要每次创建直线函数的时候同时说明a,b,x。这样,我们就需要更多的参数传递,也减少了代码的可移植性。利用闭包,我们实际上创建了泛函。line函数定义一种广泛意义的函数。这个函数的一些方面已经确定(必须是直线),但另一些方面(比如a和b参数待定)。随后,我们根据line_conf传递来的参数,通过闭包的形式,将最终函数确定下来。

###3、闭包与并行运算 闭包有效的减少了函数所需定义的参数数目。这对于并行运算来说有重要的意义。在并行运算的环境下,我们可以让每台电脑负责一个函数,然后将一台电脑的输出和下一台电脑的输入串联起来。最终,我们像流水线一样工作,从串联的电脑集群一端输入数据,从另一端输出数据。这样的情境最适合只有一个参数输入的函数。闭包就可以实现这一目的。

并行运算正称为一个热点。这也是函数式编程又热起来的一个重要原因。函数式编程早在1950年代就已经存在,但应用并不广泛。然而,我们上面描述的流水线式的工作并行集群过程,正适合函数式编程。由于函数式编程这一天然优势,越来越多的语言也开始加入对函数式编程范式的支持。

##二、装饰器 装饰器(decorator)是一种高级Python语法。装饰器可以对一个函数、方法或者类进行加工。在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包中,我们见到函数对象作为某一个函数的返回结果。相对于其它方式,装饰器语法简单,代码可读性高。因此,装饰器在Python项目中有广泛的应用。

装饰器最早在Python 2.5中出现,它最初被用于加工函数和方法这样的可调用对象(callable object,这样的对象定义有__call__方法)。在Python 2.6以及之后的Python版本中,装饰器被进一步用于加工类。

###1、装饰函数和方法 我们先定义两个简单的数学函数,一个用来计算平方和,一个用来计算平方差:

# get square sum
def square_sum(a, b):
    return a**2 + b**2

# get square diff
def square_diff(a, b):
    return a**2 - b**2

print(square_sum(3, 4))
print(square_diff(3, 4))

在拥有了基本的数学功能之后,我们可能想为函数增加其它的功能,比如打印输入。我们可以改写函数来实现这一点:

# modify: print input

# get square sum
def square_sum(a, b):
    print("intput:", a, b)
    return a**2 + b**2

# get square diff
def square_diff(a, b):
    print("input", a, b)
    return a**2 - b**2

print(square_sum(3, 4))
print(square_diff(3, 4))

我们修改了函数的定义,为函数增加了功能。

现在,我们使用装饰器来实现上述修改:

def decorator(F):
    def new_F(a, b):
        print("input", a, b)
        return F(a, b)
    return new_F

# get square sum
@decorator
def square_sum(a, b):
    return a**2 + b**2

# get square diff
@decorator
def square_diff(a, b):
    return a**2 - b**2

print(square_sum(3, 4))
print(square_diff(3, 4))

装饰器可以用def的形式定义,如上面代码中的decorator。装饰器接收一个可调用对象作为输入参数,并返回一个新的可调用对象。装饰器新建了一个可调用对象,也就是上面的new_F。new_F中,我们增加了打印的功能,并通过调用F(a, b)来实现原有函数的功能。

定义好装饰器后,我们就可以通过@语法使用了。在函数square_sum和square_diff定义之前调用@decorator,我们实际上将square_sum或square_diff传递给decorator,并将decorator返回的新的可调用对象赋给原来的函数名(square_sum或square_diff)。 所以,当我们调用square_sum(3, 4)的时候,就相当于:

square_sum = decorator(square_sum)
square_sum(3, 4)

我们知道,Python中的变量名和对象是分离的。变量名可以指向任意一个对象。从本质上,装饰器起到的就是这样一个重新指向变量名的作用(name binding),让同一个变量名指向一个新返回的可调用对象,从而达到修改可调用对象的目的。

与加工函数类似,我们可以使用装饰器加工类的方法。

如果我们有其他的类似函数,我们可以继续调用decorator来修饰函数,而不用重复修改函数或者增加新的封装。这样,我们就提高了程序的可重复利用性,并增加了程序的可读性。

###2、含参的装饰器 在上面的装饰器调用中,比如@decorator,该装饰器默认它后面的函数是唯一的参数。装饰器的语法允许我们调用decorator时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。

# a new wrapper layer
def pre_str(pre=''):
    # old decorator
    def decorator(F):
        def new_F(a, b):
            print(pre + "input", a, b)
            return F(a, b)
        return new_F
    return decorator

# get square sum
@pre_str('^_^')
def square_sum(a, b):
    return a**2 + b**2

# get square diff
@pre_str('T_T')
def square_diff(a, b):
    return a**2 - b**2

print(square_sum(3, 4))
print(square_diff(3, 4))

上面的pre_str是允许参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有环境参量的闭包。当我们使用@pre_str('^_^')调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。该调用相当于:

square_sum = pre_str('^_^') (square_sum)

###3、装饰类 在上面的例子中,装饰器接收一个函数,并返回一个函数,从而起到加工函数的效果。在Python 2.6以后,装饰器被拓展到类。一个装饰器可以接收一个类,并返回一个类,从而起到加工类的效果

def decorator(aClass):
    class newClass:
        def __init__(self, age):
            self.total_display   = 0
            self.wrapped         = aClass(age)
        def display(self):
            self.total_display += 1
            print("total display", self.total_display)
            self.wrapped.display()
    return newClass

@decorator
class Bird:
    def __init__(self, age):
        self.age = age
    def display(self):
        print("My age is",self.age)

eagleLord = Bird(5)
for i in range(3):
    eagleLord.display()

在decorator中,我们返回了一个新类newClass。在新类中,我们记录了原来类生成的对象(self.wrapped),并附加了新的属性total_display,用于记录调用display的次数。我们也同时更改了display方法。

通过修改,我们的Bird类可以显示调用display的次数了。

装饰器的核心作用是name binding。这种语法是Python多编程范式的又一个体现。大部分Python用户都不怎么需要定义装饰器,但有可能会使用装饰器。鉴于装饰器在Python项目中的广泛使用,了解这一语法是非常有益的。

##三、内存管理 语言的内存管理是语言设计的一个重要方面。它是决定语言性能的重要因素。无论是C语言的手工管理,还是Java的垃圾回收,都成为语言最重要的特征。这里以Python语言为例子,说明一门动态类型的、面向对象的语言的内存管理方式。

###1、对象的内存使用 赋值语句是语言最常见的功能了。但即使是最简单的赋值语句,也可以很有内涵。Python的赋值语句就很值得研究。

a = 1

整数1为一个对象。而a是一个引用。利用赋值语句,引用a指向对象1。Python是动态类型的语言(参考动态类型),对象与引用分离。Python像使用“筷子”那样,通过引用来接触和翻动真正的食物——对象。

引用和对象:

输入图片说明

为了探索对象在内存的存储,我们可以求助于Python的内置函数id()。它用于返回对象的身份(identity)。其实,这里所谓的身份,就是该对象的内存地址

a = 1

print(id(a))
print(hex(id(a)))

在我的计算机上,它们返回的是:

11246696
'0xab9c68'

分别为内存地址的十进制和十六进制表示。

在Python中,整数和短小的字符,Python都会缓存这些对象,以便重复使用。当我们创建多个等于1的引用时,实际上是让所有这些引用指向同一个对象

a = 1
b = 1
print(id(a))
print(id(b))

上面程序返回:

11246696

11246696

可见a和b实际上是指向同一个对象的两个引用

为了检验两个引用指向同一个对象,我们可以用is关键字is用于判断两个引用所指的对象是否相同

# True
a = 1
b = 1
print(a is b)

# True
a = "good"
b = "good"
print(a is b)

# False
a = "very good morning"
b = "very good morning"
print(a is b)

# False
a = []
b = []
print(a is b)

上面的注释为相应的运行结果。可以看到,由于Python缓存了整数和短字符串,因此每个对象只存有一份。比如,所有整数1的引用都指向同一对象。即使使用赋值语句,也只是创造了新的引用,而不是对象本身。长的字符串和其它对象可以有多个相同的对象,可以使用赋值语句创建出新的对象。

在Python中,每个对象都有存有指向该对象的引用总数,即引用计数(reference count)

我们可以使用sys包中的getrefcount(),来查看某个对象的引用计数。需要注意的是,当使用某个引用作为参数,传递给getrefcount()时,参数实际上创建了一个临时的引用。因此,getrefcount()所得到的结果,会比期望的多1。

from sys import getrefcount

a = [1, 2, 3]
print(getrefcount(a))

b = a
print(getrefcount(b))

由于上述原因,两个getrefcount将返回2和3,而不是期望的1和2。

###2、对象引用对象 Python的一个容器对象(container),比如表、词典等,可以包含多个对象。实际上,容器对象中包含的并不是元素对象本身,是指向各个元素对象的引用

我们也可以自定义一个对象,并引用其它对象:

class from_obj(object):
    def __init__(self, to_obj):
        self.to_obj = to_obj

b = [1,2,3]
a = from_obj(b)
print(id(a.to_obj))
print(id(b))

可以看到,a引用了对象b。

对象引用对象,是Python最基本的构成方式。即使是a = 1这一赋值方式,实际上是让词典的一个键值"a"的元素引用整数对象1。该词典对象用于记录所有的全局引用。该词典引用了整数对象1。我们可以通过内置函数**globals()**来查看该词典。

当一个对象A被另一个对象B引用时,A的引用计数将增加1

from sys import getrefcount

a = [1, 2, 3]
print(getrefcount(a))

b = [a, a]
print(getrefcount(a))

由于对象b引用了两次a,a的引用计数增加了2。

容器对象的引用可能构成很复杂的拓扑结构。我们可以用objgraph包来绘制其引用关系,比如:

x = [1, 2, 3]
y = [x, dict(key1=x)]
z = [y, (x, y)]

import objgraph
objgraph.show_refs([z], filename='ref_topo.png')

输入图片说明

objgraph是Python的一个第三方包。安装之前需要安装xdot。

sudo apt-get install xdot
sudo pip install -i http://mirrors.aliyuncs.com/pypi/simple objgraph
objgraph官网

两个对象可能相互引用,从而构成所谓的引用环(reference cycle)。

a = []
b = [a]
a.append(b)

即使是一个对象,只需要自己引用自己,也能构成引用环。

a = []
a.append(a)
print(getrefcount(a))

引用环会给垃圾回收机制带来很大的麻烦,我将在后面详细叙述这一点。

###3、引用减少 某个对象的引用计数可能减少。比如,可以使用del关键字删除某个引用:

from sys import getrefcount

a = [1, 2, 3]
b = a
print(getrefcount(b))

del a
print(getrefcount(b))

del也可以用于删除容器元素中的元素,比如:

a = [1,2,3]
del a[0]
print(a)

如果某个引用指向对象A,当这个引用被重新定向到某个其他对象B时,对象A的引用计数减少:

from sys import getrefcount

a = [1, 2, 3]
b = a
print(getrefcount(b))

a = 1
print(getrefcount(b))

###4、垃圾回收 吃太多,总会变胖,Python也是这样。当Python中的对象越来越多,它们将占据越来越大的内存。不过你不用太担心Python的体形,它会乖巧的在适当的时候“减肥”,启动垃圾回收(garbage collection),将没用的对象清除。在许多语言中都有垃圾回收机制,比如Java和Ruby。尽管最终目的都是塑造苗条的提醒,但不同语言的减肥方案有很大的差异 (这一点可以对比本文和Java内存管理与垃圾回收)。

从基本原理上,当Python的某个对象的引用计数降为0时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了。比如某个新建对象,它被分配给某个引用,对象的引用计数变为1。如果引用被删除,对象的引用计数为0,那么该对象就可以被垃圾回收。比如下面的表:

a = [1, 2, 3]
del a

del a后,已经没有任何引用指向之前建立的[1, 2, 3]这个表。用户不可能通过任何方式接触或者动用这个对象。这个对象如果继续待在内存里,就成了不健康的脂肪。当垃圾回收启动时,Python扫描到这个引用计数为0的对象,就将它所占据的内存清空。

然而,减肥是个昂贵而费力的事情。垃圾回收时,Python不能进行其它的任务。频繁的垃圾回收将大大降低Python的工作效率。如果内存中的对象不多,就没有必要总启动垃圾回收。所以,Python只会在特定条件下,自动启动垃圾回收。当Python运行时,会记录其中**分配对象(object allocation)取消分配对象(object deallocation)**的次数。当两者的差值高于某个阈值时,垃圾回收才会启动。

我们可以通过gc模块的**get_threshold()**方法,查看该阈值:

import gc
print(gc.get_threshold())

返回(700, 10, 10),后面的两个10是与分代回收相关的阈值,后面可以看到。700即是垃圾回收启动的阈值。可以通过gc中的set_threshold()方法重新设置。

我们也可以手动启动垃圾回收,即使用gc.collect()

###5、分代回收 Python同时采用了分代(generation)回收的策略。这一策略的基本假设是,存活时间越久的对象,越不可能在后面的程序中变成垃圾。我们的程序往往会产生大量的对象,许多对象很快产生和消失,但也有一些对象长期被使用。出于信任和效率,对于这样一些“长寿”对象,我们相信它们的用处,所以减少在垃圾回收中扫描它们的频率。 Python将所有的对象分为0,1,2三代。所有的新建对象都是0代对象。当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代对象。垃圾回收启动时,一定会扫描所有的0代对象。如果0代经过一定次数垃圾回收,那么就启动对0代和1代的扫描清理。当1代也经历了一定次数的垃圾回收后,那么会启动对0,1,2,即对所有对象进行扫描。

这两个次数即上面get_threshold()返回的(700, 10, 10)返回的两个10。也就是说,每10次0代垃圾回收,会配合1次1代的垃圾回收;而每10次1代的垃圾回收,才会有1次的2代垃圾回收。

同样可以用set_threshold()来调整,比如对2代对象进行更频繁的扫描。

import gc
gc.set_threshold(700, 10, 5)

###6、孤立的引用环 引用环的存在会给上面的垃圾回收机制带来很大的困难。这些引用环可能构成无法使用,但引用计数不为0的一些对象。

a = []
b = [a]
a.append(b)

del a
del b

上面我们先创建了两个表对象,并引用对方,构成一个引用环。删除了a,b引用之后,这两个对象不可能再从程序中调用,就没有什么用处了。但是由于引用环的存在,这两个对象的引用计数都没有降到0,不会被垃圾回收。

孤立的引用环:

输入图片说明

为了回收这样的引用环,Python复制每个对象的引用计数,可以记为gc_ref。假设,每个对象i,该计数为gc_ref_i。Python会遍历所有的对象i。对于每个对象i引用的对象j,将相应的gc_ref_j减1。

遍历后的结果:

tupian

在结束遍历后,gc_ref不为0的对象,和这些对象引用的对象,以及继续更下游引用的对象,需要被保留。而其它的对象则被垃圾回收。

注:本Python学习笔记是按照Vamei的博客教程来学习的,如有兴趣可以参考Vamei Python快速开发博文

© 著作权归作者所有

Corwien
粉丝 27
博文 149
码字总数 115164
作品 0
广州
程序员
私信 提问
编程学习笔记之python深入之装饰器案例及说明文档[图]

编程学习笔记之python深入之装饰器案例及说明文档[图] 装饰器即在不对一个函数体进行任何修改,以及不改变整体的原本意思的情况下,增加函数功能的新函数,因为这个新函数对旧函数进行了装饰...

原创小博客
2018/07/22
11
0
python三大神器===》装饰器

1.认识装饰器   如果你经常看我的博客,你已经学会了python的前两大‘神器’(迭代器,生成器),那么什么是装饰器呢?就如字面意义装饰器是对某个事物(通常指函数)进行装饰,让其在不修改...

许传坤
2018/08/23
0
0
Python函数基础教程-张明阳-专题视频课程

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/a2011480169/article/details/83579571 Python函数基础教程—730人已学习 课程介绍 通过本次课程的讲解,可以...

安静的技术控
2017/12/15
0
0
Python基础——装饰器、模块(0417)

一、Python基础——复习 1、字符串的常用操作 2、列表的常用操作 3、字典的常用操作 二、Python——装饰器:函数可以是变量 1、Python是一种面向对象的编程语言,在Python中所有的都可以是Pyt...

python初雪之路
2018/04/17
41
0
Python学习笔记二十三(闭包 / 装饰器 )

函数 什么是函数? 将具有某种功能的代码放到一起, 构成一个函数. 为什么说函数? 因为需要研究一个问题, 函数可以嵌套调用, 那么可不可以嵌套定义? 函数的嵌套调用 函数能使用函数名调用, 那么...

DragonFangQy
2018/05/26
0
0

没有更多内容

加载失败,请刷新页面

加载更多

java通过ServerSocket与Socket实现通信

首先说一下ServerSocket与Socket. 1.ServerSocket ServerSocket是用来监听客户端Socket连接的类,如果没有连接会一直处于等待状态. ServetSocket有三个构造方法: (1) ServerSocket(int port);...

Blueeeeeee
今天
6
0
用 Sphinx 搭建博客时,如何自定义插件?

之前有不少同学看过我的个人博客(http://python-online.cn),也根据我写的教程完成了自己个人站点的搭建。 点此:使用 Python 30分钟 教你快速搭建一个博客 为防有的同学不清楚 Sphinx ,这...

王炳明
昨天
5
0
黑客之道-40本书籍助你快速入门黑客技术免费下载

场景 黑客是一个中文词语,皆源自英文hacker,随着灰鸽子的出现,灰鸽子成为了很多假借黑客名义控制他人电脑的黑客技术,于是出现了“骇客”与"黑客"分家。2012年电影频道节目中心出品的电影...

badaoliumang
昨天
14
0
很遗憾,没有一篇文章能讲清楚线程的生命周期!

(手机横屏看源码更方便) 注:java源码分析部分如无特殊说明均基于 java8 版本。 简介 大家都知道线程是有生命周期,但是彤哥可以认真负责地告诉你网上几乎没有一篇文章讲得是完全正确的。 ...

彤哥读源码
昨天
15
0
jquery--DOM操作基础

本文转载于:专业的前端网站➭jquery--DOM操作基础 元素的访问 元素属性操作 获取:attr(name);$("#my").attr("src"); 设置:attr(name,value);$("#myImg").attr("src","images/1.jpg"); ......

前端老手
昨天
7
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部