文档章节

数据仓库技术概述(一看就是架构师写的,对我极其有用)

gulf
 gulf
发布于 06/21 14:12
字数 2852
阅读 38
收藏 3

ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、交互转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

ETL是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。

信息是现代企业的重要资源,是企业运用科学管理、决策分析的基础。目前,大多数企业花费大量的资金和时间来构建联机事务处理OLTP的业务系统和办公自动化系统,用来记录事务处理的各种相关数据。据统计,数据量每2~3年时间就会成倍增长,这些数据蕴含着巨大的商业价值,而企业所关注的通常只占在总数据量的2%~4%左右。因此,企业仍然没有最大化地利用已存在的数据资源,以至于浪费了更多的时间和资金,也失去制定关键商业决策的最佳契机。于是,企业如何通过各种技术手段,并把数据转换为信息、知识,已经成了提高其核心竞争力的主要瓶颈。而ETL则是主要的一个技术手段。

软件名称

 Extract-Transform-Load 

过    程

数据抽取、清洗、转换、装载

应    用

Informatica、OWB、DataStage

数据集成

快速实现ETL

工具应用

ETL工具的典型代表有:Informatica、Datastage、OWB、微软DTS、BeeloadKettle等等……

开源的工具有eclipse的etl插件:cloveretl

ETL的质量问题具体表现为正确性、完整性、一致性、完备性、有效性、时效性和可获取性等几个特性。而影响质量问题的原因有很多,由系统集成和历史数据造成的原因主要包括:业务系统不同时期系统之间数据模型不一致;业务系统不同时期业务过程有变化;旧系统模块在运营、人事、财务、办公系统等相关信息的不一致;遗留系统和新业务、管理系统数据集成不完备带来的不一致性。

实现ETL,首先要实现ETL转换的过程。体现为以下几个方面:

1、空值处理:可捕获字段空值,进行加载或替换为其他含义数据,并可根据字段空值实现分流加载到不同目标库。

2、规范化数据格式:可实现字段格式约束定义,对于数据源中时间、数值、字符等数据,可自定义加载格式。

3、拆分数据:依据业务需求对字段可进行分解。例,主叫号 861082585313-8148,可进行区域码和电话号码分解。

4、验证数据正确性:可利用Lookup及拆分功能进行数据验证。例如,主叫号861082585313-8148,进行区域码和电话号码分解后,可利用Lookup返回主叫网关或交换机记载的主叫地区,进行数据验证。

5、数据替换:对于因业务因素,可实现无效数据、缺失数据的替换。

6、Lookup:查获丢失数据 Lookup实现子查询,并返回用其他手段获取的缺失字段,保证字段完整性。

7、建立ETL过程的主外键约束:对无依赖性的非法数据,可替换或导出到错误数据文件中,保证主键唯一记录的加载。

 

体系结构

编辑

ETL工具目前有两种技术架构——ETL架构和ELT架构,不仔细看好像没什么不同之处,那么这两种架构到底有什么区别呢?

 

ETL架构

在ETL架构中,数据的流向是从源数据流到ETL工具,ETL工具是一个单独的数据处理引擎,一般会在单独的硬件服务器上,实现所有数据转化的工作,然后将数据加载到目标数据仓库中,如果要增加整个ETL过程的效率,则只能增强ETL工具服务器的配置,优化系统处理流程(一般可调的东西非常少)。IBM的datastage和Informatica的powercenter原来都是采用的这种架构。

ETL架构的优势:

  1. ETL可以分担数据库系统的负载(采用单独的硬件服务器)

  2. ETL相对于EL-T架构可以实现更为复杂的数据转化逻辑

  3. ETL采用单独的硬件服务器。.

  4. ETL与底层的数据库数据存储无关。

ELT架构

ELT架构中,ELT只负责提供图形化的界面来设计业务规则,数据的整个加工过程都在目标和源的数据库之间流动,ELT协调相关的数据库系统来执行相关的应用,数据加工过程既可以在源数据库端执行,也可以在目标数据仓库端执行(主要取决于系统的架构设计和数据属性)。当ELT过程需要提高效率,则可以通过对相关数据库进行调优,或者改变执行加工的服务器就可以达到。一般数据库厂商会力推该种架构,像OracleTeradata都极力宣传ELT架构。

ELT架构的优势:

  1. ELT主要通过数据库引擎来实现系统的可扩展性(尤其是当数据加工过程在晚上时,可以充分利用数据库引擎的资源)

  2. ELT可以保持所有的数据始终在数据库当中,避免数据的加载和导出,从而保证效率,提高系统的可监控性。

  3. ELT可以根据数据的分布情况进行并行处理优化,并可以利用数据库的固有功能优化磁盘I/O。

  4. ELT的可扩展性取决于数据库引擎和其硬件服务器的可扩展性。

  5. 通过对相关数据库进行性能调优,ETL过程获得3到4倍的效率提升一般不是特别困难。

 

注意事项

编辑

为了能更好地实现ETL,用户在实施ETL过程中应注意以下几点:

第一,如果条件允许,可利用数据中转区对运营数据进行预处理,保证集成与加载的高效性;

第二,如果ETL的过程是主动“拉取”,而不是从内部“推送”,其可控性将大为增强;

第三,ETL之前应制定流程化的配置管理和标准协议;

第四,关键数据标准至关重要。ETL面临的最大挑战是当接收数据时其各源数据的异构性和低质量。以电信为例,A系统按照统计代码管理数据,B系统按照账目数字管理,C系统按照语音ID管理。当ETL需要对这三个系统进行集成以获得对客户的全面视角时,这一过程需要复杂的匹配规则、名称/地址正常化与标准化。而ETL在处理过程中会定义一个关键数据标准,并在此基础上,制定相应的数据接口标准。

第五,将数据加载到个体数据集时。在没有一个集中化的数据库情况下,拥有数据模板是非常重要的。它们是标准化的接口,每一个个体或者部门数据集市都能够填充。确保你的ETL工具有这样的功能,能够扩展到一个数据仓库平台,将信息从一个数据集市流动到下一个。 [2] 

 

特色功能

编辑

ETL过程在很大程度上受企业对源数据的理解程度的影响,也就是说从业务的角度看数据集成非常重要。一个优秀的ETL设计应该具有如下功能:

 

管理简单

采用元数据方法,集中进行管理;接口、数据格式、传输有严格的规范;尽量不在外部数据源安装软件;数据抽取系统流程自动化,并有自动调度功能;抽取的数据及时、准确、完整;可以提供同各种数据系统的接口,系统适应性强;提供软件框架系统,系统功能改变时,应用程序很少改变便可适应变化;可扩展性强。

标准定义数据

合理的业务模型设计对ETL至关重要。数据仓库是企业唯一、真实、可靠的综合数据平台。数据仓库的设计建模一般都依照三范式、星型模型、雪花模型,无论哪种设计思想,都应该最大化地涵盖关键业务数据,把运营环境中杂乱无序的数据结构统一成为合理的、关联的、分析型的新结构,而ETL则会依照模型的定义去提取数据源,进行转换、清洗,并最终加载到目标数据仓库中。

模型的重要之处在于对数据做标准化定义,实现统一的编码、统一的分类和组织。标准化定义的内容包括:标准代码统一、业务术语统一。ETL依照模型进行初始加载、增量加载、缓慢增长维、慢速变化维、事实表加载等数据集成,并根据业务需求制定相应的加载策略、刷新策略、汇总策略、维护策略。

拓展新型应用

对业务数据本身及其运行环境的描述与定义的数据,称之为元数据(metadata)。元数据是描述数据的数据。从某种意义上说,业务数据主要用于支持业务系统应用的数据,而元数据则是企业信息门户、客户关系管理、数据仓库、决策支持和B2B等新型应用所不可或缺的内容。

元数据的典型表现为对象的描述,即对数据库、表、列、列属性(类型、格式、约束等)以及主键/外部键关联等等的描述。特别是现行应用的异构性与分布性越来越普遍的情况下,统一的元数据就愈发重要了。“信息孤岛”曾经是很多企业对其应用现状的一种抱怨和概括,而合理的元数据则会有效地描绘出信息的关联性。

元数据对于ETL的集中表现为:定义数据源的位置及数据源的属性、确定从源数据到目标数据的对应规则、确定相关的业务逻辑、在数据实际加载前的其他必要的准备工作,等等,它一般贯穿整个数据仓库项目,而ETL的所有过程必须最大化地参照元数据,这样才能快速实现ETL。

本文转载自:https://baike.baidu.com/item/ETL/1251949?fr=aladdin

共有 人打赏支持
gulf
粉丝 11
博文 276
码字总数 156468
作品 0
广州
程序员
大数据行业就业指南:三大方向 十大职位

当下,大数据的趋势已逐步从概念走向落地,而在IT人跟随大数据浪潮的转型中,各大企业对大数据高端人才的需求也越来越紧迫。这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业机遇...

柯西带你学编程
05/27
0
0
程序员如何才能晋升为优秀的高薪架构师?

对于工作多年的程序员而言,日后的职业发展无非是继续专精技术、转型管理和晋升架构师三种选择。 今天,100offer从架构师在一家公司有多重要、优秀架构师需要具备怎样的素质以及架构师的发展...

野梦M
2017/12/04
0
0
大数据架构师拿年薪50W的方法诀窍

什么是大数据架构师: 围绕大数据系平台系统级的研发人员, 熟练Hadoop、Spark、Storm等主流大数据平台的核心框架。深入掌握如何编写MapReduce的作业及作业流的管理完成对数据的计算,并能够...

daidaiweng
04/12
0
0
我的测试生活感悟1

真的是万事开头难,但我觉得更难的是,每天都坚持做同一件事情。在不被强迫的情况下(如:上班、吃饭、睡觉...),在可自由支配的时间里,现在我每天坚持做的貌似只有GoogleReader。希望我的测...

科技小毛
2017/07/19
0
0
58沈剑:架构师的平凡之路

沈剑58技术委员会主席,58高级架构师,58到家技术总监。C2C技术部负责人,58技术学院优秀讲师。   1,程序员客栈席文奕:你是何时开始接触编程的?   沈剑:不算初中的小霸王超级玛利亚和...

程序员客栈
2016/04/26
174
0

没有更多内容

加载失败,请刷新页面

加载更多

web打印控件 LODOP的详细api

web打印控件 LODOP的详细api

wangxujun59
32分钟前
1
0
从一次小哥哥与小姐姐的转账开始, 浅谈分布式事务从理论到实践

分布式事务是个业界难题,在看分布式事务方案之前,先从单机数据库事务开始看起。 什么是事务 事务(Transaction)是数据库系统中一系列操作的一个逻辑单元,所有操作要么全部成功要么全部失...

中间件小哥
35分钟前
5
0
荣登Github日榜!微信最新开源MMKV

MMKV 开源当日即登Github Trending日榜,三日后荣登周榜。MMKV 在腾讯内部开源半年,得到公司内部团队的广泛应用和一致好评。 MMKV 是基于 mmap 内存映射的移动端通用 key-value 组件,底层序...

腾讯开源
44分钟前
3
0
前端取色工具:jcpicker

http://annystudio.com/software/colorpicker/#jcp-download

轻量级赤影
46分钟前
1
0
Swift - 将图片保存到相册

import Photos func loadImage(image:UIImage) { UIImageWriteToSavedPhotosAlbum(image, self, #selector(saveImage(image:didFinishSavingWithError:contextInfo:)), ni......

west_zll
52分钟前
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部