文档章节

Hive命令操作(一)

闪电
 闪电
发布于 2016/07/01 01:13
字数 776
阅读 40
收藏 0

1、准备文本文件,启动hadoop[root@hadoop0 ~]# cat /opt/test.txt
JieJie
MengMeng
NingNing
JingJing
FengJie
[root@hadoop0 ~]# start-all.sh
Warning: $HADOOP_HOME is deprecated.
starting namenode, logging to /opt/hadoop/libexec/../logs/hadoop-root-namenode-hadoop0.out
localhost: starting datanode, logging to /opt/hadoop/libexec/../logs/hadoop-root-datanode-hadoop0.out
localhost: starting secondarynamenode, logging to /opt/hadoop/libexec/../logs/hadoop-root-secondarynamenode-hadoop0.out
starting jobtracker, logging to /opt/hadoop/libexec/../logs/hadoop-root-jobtracker-hadoop0.out
localhost: starting tasktracker, logging to /opt/hadoop/libexec/../logs/hadoop-root-tasktracker-hadoop0.out
2、进入命令行[root@hadoop0 ~]# hive
WARNING: org.apache.hadoop.metrics.jvm.EventCounter is deprecated. Please use org.apache.hadoop.log.metrics.EventCounter in all the log4j.properties files.
Logging initialized using configuration in jar:file:/opt/hive/lib/hive-common-0.9.0.jar!/hive-log4j.properties
Hive history file=/tmp/root/hive_job_log_root_201509252001_1674268419.txt
3、查询昨天的表hive> select * from stu;
OK
JieJie 26       NULL
MM 24   NULL
Time taken: 17.05 seconds
4、显示数据库hive> show databases; 
OK
default
Time taken: 0.237 seconds
5、创建数据库hive> create database test; 
OK
Time taken: 0.259 seconds
hive> show databases;       
OK
default
test
6、使用数据库Time taken: 0.119 seconds
hive> use test;
OK
Time taken: 0.03 seconds
7、创建表textfile 默认格式,数据不做压缩,磁盘开销大,数据解析开销大。
可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。
SequenceFile是Hadoop API提供的一种二进制文件支持,其具有使用方便、可分割、可压缩的特点。
SequenceFile支持三种压缩选择:NONE, RECORD, BLOCK。 Record压缩率低,一般建议使用BLOCK压缩
rcfile是一种行列存储相结合的存储方式。首先,其将数据按行分块,保证同一个record在一个块上,避免读一个记录需要读取多个block。其次,块数据列式存储,有利于数据压缩和快速的列存取。
hive>  create table test1(str STRING)  STORED AS TEXTFILE; 
OK
Time taken: 0.598 seconds
--加载数据
hive> LOAD DATA LOCAL INPATH '/opt/test.txt' INTO TABLE test1; 
Copying data from file:/opt/test.txt
Copying file: file:/opt/test.txt
Loading data to table test.test1
OK
Time taken: 1.657 seconds
hive> select * from test1;
OK
JieJie
MengMeng
NingNing
JingJing
FengJie
Time taken: 0.388 seconds
hive> select count(*) from test1;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapred.reduce.tasks=<number>
Starting Job = job_201509252000_0001, Tracking URL = http://hadoop0:50030/jobdetails.jsp?jobid=job_201509252000_0001
Kill Command = /opt/hadoop/libexec/../bin/hadoop job  -Dmapred.job.tracker=hadoop0:9001 -kill job_201509252000_0001
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2015-09-25 20:09:55,796 Stage-1 map = 0%,  reduce = 0%
2015-09-25 20:10:19,806 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 3.67 sec
2015-09-25 20:10:53,218 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 6.95 sec
2015-09-25 20:10:54,223 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 6.95 sec
MapReduce Total cumulative CPU time: 6 seconds 950 msec
Ended Job = job_201509252000_0001
MapReduce Jobs Launched:
Job 0: Map: 1  Reduce: 1   Cumulative CPU: 6.95 sec   HDFS Read: 258 HDFS Write: 2 SUCCESS
Total MapReduce CPU Time Spent: 6 seconds 950 msec
OK
5
Time taken: 77.515 seconds


create table test1(str STRING)  STORED AS TEXTFILE; 
create table test2(str STRING) ;
hive> create table test3(str STRING)  STORED AS SEQUENCEFILE;
OK
Time taken: 0.112 seconds
 
hive> create table test4(str STRING)  STORED AS RCFILE; 
OK
Time taken: 0.502 seconds
8、把旧表数据导入新表INSERT OVERWRITE TABLE test4 SELECT * FROM test1;
9、设置hive参数hive> SET hive.exec.compress.output=true; 
hive> SET io.seqfile.compression.type=BLOCK;
10、查看hive参数 hive> SET ; 

本文转载自:http://gaojingsong.iteye.com/blog/2246316

闪电
粉丝 75
博文 392
码字总数 6789
作品 0
海淀
技术主管
私信 提问
Spark SQL之Hive数据源实战

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 https://blog.csdn.net/weixin39966065/article/details/92798549 目录 一:HiveContext与S...

威少SOS
06/18
0
0
一脸懵逼学习Hive的安装(将sql语句翻译成MapReduce程序的一个工具)

Hive只在一个节点上安装即可: 1.上传tar包:这个上传就不贴图了,贴一下上传后的,看一下虚拟机吧: 2.解压操作: [root@slaver3 hadoop]# tar -zxvf hive-0.12.0.tar.gz 解压后贴一下图: ...

别叫小伙
2017/10/18
0
0
hive(02)、数据仓库Hive的基本使用

在上篇《 hive(01)、基于hadoop集群的数据仓库Hive搭建实践 》一文中我们搭建了分布式的数据仓库Hive服务,本文主要是在上文的基础上结合Hadoop分布式文件系统,将结构化的数据文件映射为一张...

MaxBill
2018/01/10
245
0
大数据教程(11.6)hadoop2.9.1平台上仓库工具hive2.3.4搭建

上一篇文章介绍了hive的原理以及实现机。本篇博客开始,博主将分享数据仓库hive工具搭建全过程。 一、安装Hive (1)、下载Hive和环境准备: Hive官网地址:http://hive.apache.org/index.html...

em_aaron
01/20
59
0
深入学习Hive应用场景及架构原理

col1 ARRAY< INT>, col2 MAP< STRING,INT>, col3 STRUCT< a:STRING,b:INT,c:DOUBLE> ) (三)类型转化 Hive 的原子数据类型是可以进行隐式转换的,类似于 Java 的类型转换,例如某表达式使用......

py_123456
2018/05/12
0
0

没有更多内容

加载失败,请刷新页面

加载更多

编程作业20190210900169

1编写一个程序,提示用户输入名和姓,然后以“名,姓”的格式打印出来。 #include <stdio.h>#include <stdlib.h> int main(){ char firstName[20]; char lastName[20]; print......

1李嘉焘1
32分钟前
6
0
补码的优点及原理分析

只讨论整数 1.计算机内部为什么没有减法器? 减法运算本身其实就是加法,如x - y即x +(-y),所以只需要将负数成功表示出来并可以参加加法运算,那加法器就可同时实现“+”和“-”的运算。这...

清自以敬
47分钟前
70
0
Docker 可视化管理 portainer

官网安装指南: https://portainer.readthedocs.io/en/latest/deployment.html docker-compose.yml 位置,下载地址:https://downloads.portainer.io/docker-compose.yml...

Moks角木
今天
7
0
Spring Security 实战干货:必须掌握的一些内置 Filter

1. 前言 上一文我们使用 Spring Security 实现了各种登录聚合的场面。其中我们是通过在 UsernamePasswordAuthenticationFilter 之前一个自定义的过滤器实现的。我怎么知道自定义过滤器要加在...

码农小胖哥
今天
9
0
常见分布式事务解决方案

1 微服务的发展 微服务倡导将复杂的单体应用拆分为若干个功能简单、松耦合的服务,这样可以降低开发难度、增强扩展性、便于敏捷开发。当前被越来越多的开发者推崇,很多互联网行业巨头、开源...

asdf08442a
今天
5
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部