文档章节

python进程池:multiprocessing.pool

 阿豪boy
发布于 2017/08/31 21:49
字数 1391
阅读 19
收藏 0
点赞 0
评论 0

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
Pool可以提供指定数量的进程供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

 

例1:使用进程池

复制代码

#coding: utf-8
import multiprocessing
import time

def func(msg):
    print "msg:", msg
    time.sleep(3)
    print "end"

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes = 3)
    for i in xrange(4):
        msg = "hello %d" %(i)
        pool.apply_async(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

    print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
    pool.close()
    pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    print "Sub-process(es) done."

复制代码

一次执行结果

1

2

3

4

5

6

7

8

9

10

mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ello 0

 

msg: hello 1

msg: hello 2

end

msg: hello 3

end

end

end

Sub-process(es) done.

函数解释

  • apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)
  • close()    关闭pool,使其不在接受新的任务。
  • terminate()    结束工作进程,不在处理未完成的任务。
  • join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。

回到顶部

例2:使用进程池(阻塞)

复制代码

#coding: utf-8
import multiprocessing
import time

def func(msg):
    print "msg:", msg
    time.sleep(3)
    print "end"

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes = 3)
    for i in xrange(4):
        msg = "hello %d" %(i)
        pool.apply(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

    print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
    pool.close()
    pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    print "Sub-process(es) done."

复制代码

一次执行的结果

1

2

3

4

5

6

7

8

9

10

msg: hello 0

end

msg: hello 1

end

msg: hello 2

end

msg: hello 3

end

Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~

Sub-process(es) done. 

回到顶部

例3:使用进程池,并关注结果

复制代码

import multiprocessing
import time

def func(msg):
    print "msg:", msg
    time.sleep(3)
    print "end"
    return "done" + msg

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=4)
    result = []
    for i in xrange(3):
        msg = "hello %d" %(i)
        result.append(pool.apply_async(func, (msg, )))
    pool.close()
    pool.join()
    for res in result:
        print ":::", res.get()
    print "Sub-process(es) done."

复制代码

一次执行结果

1

2

3

4

5

6

7

8

9

10

msg: hello 0

msg: hello 1

msg: hello 2

end

end

end

::: donehello 0

::: donehello 1

::: donehello 2

Sub-process(es) done.

 :get()函数得出每个返回结果的值

回到顶部

例4:使用多个进程池

复制代码

#coding: utf-8
import multiprocessing
import os, time, random

def Lee():
    print "\nRun task Lee-%s" %(os.getpid()) #os.getpid()获取当前的进程的ID
    start = time.time()
    time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数
    end = time.time()
    print 'Task Lee, runs %0.2f seconds.' %(end - start)

def Marlon():
    print "\nRun task Marlon-%s" %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 40)
    end=time.time()
    print 'Task Marlon runs %0.2f seconds.' %(end - start)

def Allen():
    print "\nRun task Allen-%s" %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 30)
    end = time.time()
    print 'Task Allen runs %0.2f seconds.' %(end - start)

def Frank():
    print "\nRun task Frank-%s" %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 20)
    end = time.time()
    print 'Task Frank runs %0.2f seconds.' %(end - start)
        
if __name__=='__main__':
    function_list=  [Lee, Marlon, Allen, Frank] 
    print "parent process %s" %(os.getpid())

    pool=multiprocessing.Pool(4)
    for func in function_list:
        pool.apply_async(func)     #Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中

    print 'Waiting for all subprocesses done...'
    pool.close()
    pool.join()    #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
    print 'All subprocesses done.'

复制代码

一次执行结果

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

parent process 7704

 

Waiting for all subprocesses done...

Run task Lee-6948

 

Run task Marlon-2896

 

Run task Allen-7304

 

Run task Frank-3052

Task Lee, runs 1.59 seconds.

Task Marlon runs 8.48 seconds.

Task Frank runs 15.68 seconds.

Task Allen runs 18.08 seconds.

All subprocesses done.

 

multiprocessing pool map

复制代码

#coding: utf-8
import multiprocessing 

def m1(x): 
    print x * x 

if __name__ == '__main__': 
    pool = multiprocessing.Pool(multiprocessing.cpu_count()) 
    i_list = range(8)
    pool.map(m1, i_list)

复制代码

一次执行结果

1

2

3

4

5

6

7

8

0

1

4

9

16

25

36

49

 参考:http://www.dotblogs.com.tw/rickyteng/archive/2012/02/20/69635.aspx 

 

问题:http://bbs.chinaunix.net/thread-4111379-1-1.html

复制代码

#coding: utf-8
import multiprocessing
import logging

def create_logger(i):
    print i

class CreateLogger(object):
    def __init__(self, func):
        self.func = func

if __name__ == '__main__':
    ilist = range(10)

    cl = CreateLogger(create_logger)
    pool = multiprocessing.Pool(multiprocessing.cpu_count())
    pool.map(cl.func, ilist)

    print "hello------------>"

复制代码

一次执行结果

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

hello------------>

© 著作权归作者所有

共有 人打赏支持
粉丝 21
博文 946
码字总数 656784
作品 0
西安
python队列、线程间通信Queue,多进程模块multiprocessing

python队列 队列是线程间最常用的数据交换形式,Queue是提供队列的操作模块。三种队列: 1、FIFO 2、LIFO 3、Priority In [3]: import Queue In [4]: queue= Queue.Queue() In [5]: queue.em...

1350368559
07/04
0
0
python3下multiprocessing、threading和gevent性能对比

转自: http://blog.csdn.net/littlethunder/article/details/40983031 目前计算机程序一般会遇到两类I/O:硬盘I/O和网络I/O。我就针对网络I/O的场景分析下python3下进程、线程、协程效率的对...

好铁
2016/03/30
139
0
python笔记——简易worker multiprocessing.Pool

多任务模型设计是一个比较复杂的逻辑,但是python对于多任务的处理却有种种方便的类库,不需要过多的纠结进程/线程间的操作细节。比如multiprocessing.Pool就是其中之一。 官方给的范例也很简...

Feng_Yu
2014/08/21
0
3
python--多进程的用法详解实例

想让python实现多进程(multiprocessing),我们要先区分不同的操作系统的不同之处。 Linux操作系统下提供了一个fork()系统调用,普通函数调用一次返回一次,fork()调用一次返回两次,因为操作...

山有木兮有木兮
05/14
0
0
python多进程并发之multiprocessing

multiprocessing包是Python中的多进程管理包。它与 threading.Thread类似,可以利用multiprocessing.Process对象来创建一个进程。该进程可以允许放在Python程序内部编写的函数中。该Process...

_Change_
2017/11/03
0
0
Python就业班笔记整理(三)

进程、线程的区别与优缺点1. 定义的不同: 进程是系统进行资源分配的最小单位. 线程是进程的一个实体,是CPU进行调度的基本单位。线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的...

我是小谷粒
07/04
0
0
python ThreadPoolExecutor线程池使用

python有好几种实现线程池的方式, 注意选择一下,哪种是自己需要的。 最近用上ThreadPoolExecutor, 用来代替celery的方式。 主要是用在celery上的时间太少, 没有吃透, 还有,我们的应用没...

天飞
07/03
0
0
Python高级编程和异步IO并发编程

Python高级编程和异步IO并发编程 网盘地址:https://pan.baidu.com/s/1eB-BsUacBRhKxh7qXwndMQ 密码: tgba 备用地址(腾讯微云):https://share.weiyun.com/5Z3x9V0 密码:7cdnb2 针对Pytho...

人气王子333
04/23
0
0
Python 多线程教程:并发与并行

在批评Python的讨论中,常常说起Python多线程是多么的难用。还有人对 global interpreter lock(也被亲切的称为“GIL”)指指点点,说它阻碍了Python的多线程程序同时运行。因此,如果你是从其...

大数据之路
2015/04/11
0
0
12道必会的Python面试题,附详细讲解

无论是应聘Python方向的web开发,还是爬虫工程师,或是数据分析,还是自动化运维,都涉及到一些基础的知识!小编挑了一些Python的基础面试题,看看你能不能的答上来,也许面试的同学用的着!...

诸葛玥
06/16
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

NNS域名系统之域名竞拍

0x00 前言 其实在官方文档中已经对域名竞拍的过程有详细的描述,感兴趣的可以移步http://doc.neons.name/zh_CN/latest/nns_protocol.html#id30 此处查阅。 我这里主要对轻钱包开发中会用到的...

暖冰
今天
0
0
32.filter表案例 nat表应用 (iptables)

10.15 iptables filter表案例 10.16/10.17/10.18 iptables nat表应用 10.15 iptables filter表案例: ~1. 写一个具体的iptables小案例,需求是把80端口、22端口、21 端口放行。但是,22端口我...

王鑫linux
今天
0
0
shell中的函数&shell中的数组&告警系统需求分析

20.16/20.17 shell中的函数 20.18 shell中的数组 20.19 告警系统需求分析

影夜Linux
今天
0
0
Linux网络基础、Linux防火墙

Linux网络基础 ip addr 命令 :查看网口信息 ifconfig命令:查看网口信息,要比ip addr更明了一些 centos 7默认没安装ifconfig命令,可以使用yum install -y net-tools命令来安装。 ifconfig...

李超小牛子
今天
1
0
[机器学习]回归--Decision Tree Regression

CART决策树又称分类回归树,当数据集的因变量为连续性数值时,该树算法就是一个回归树,可以用叶节点观察的均值作为预测值;当数据集的因变量为离散型数值时,该树算法就是一个分类树,可以很...

wangxuwei
昨天
1
0
Redis做分布式无锁CAS的问题

因为Redis本身是单线程的,具备原子性,所以可以用来做分布式无锁的操作,但会有一点小问题。 public interface OrderService { public String getOrderNo();} public class OrderRe...

算法之名
昨天
10
0
143. Reorder List - LeetCode

Question 143. Reorder List Solution 题目大意:给一个链表,将这个列表分成前后两部分,后半部分反转,再将这两分链表的节点交替连接成一个新的链表 思路 :先将链表分成前后两部分,将后部...

yysue
昨天
1
0
数据结构与算法1

第一个代码,描述一个被称为BankAccount的类,该类模拟了银行中的账户操作。程序建立了一个开户金额,显示金额,存款,取款并显示余额。 主要的知识点联系为类的含义,构造函数,公有和私有。...

沉迷于编程的小菜菜
昨天
1
0
从为什么别的队伍总比你的快说起

在机场候检排队的时候,大多数情况下,别的队伍都要比自己所在的队伍快,并常常懊悔当初怎么没去那个队。 其实,最快的队伍只能有一个,而排队之前并不知道那个队快。所以,如果有六个队伍你...

我是菜鸟我骄傲
昨天
1
0
分布式事务常见的解决方案

随着互联网的发展,越来越多的多服务相互之间的调用,这时候就产生了一个问题,在单项目情况下很容易实现的事务控制(通过数据库的acid控制),变得不那么容易。 这时候就产生了多种方案: ...

小海bug
昨天
3
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部