文档章节

MATLAB conv2卷积的实现

abcijkxyz
 abcijkxyz
发布于 2016/11/22 16:46
字数 368
阅读 6
收藏 0

二维卷积的算法原理比较简单,参考任意一本数字信号处理的书籍,而matlab的conv2函数的滤波有个形状参数,用下面的一张图很能说明问题:


这里给出本人自己的实现方案,代码的优化空间很大,用到了自己目前开发的FastIV中的一些函数接口。具体实现如下:

#include "fiv_core.h"

typedef enum{
	FIV_CONV2_SHAPE_FULL,
	FIV_CONV2_SHAPE_SAME,
	FIV_CONV2_SHAPE_VALID
}FIV_CONV_SHAPE;


void fIv_conv2(fIvMat** dst_mat, fIvMat* src_mat, fIvMat* kernel_mat, FIV_CONV_SHAPE shape)
{
	int src_row = src_mat->rows;
	int src_cols = src_mat->cols;
	int kernel_row = kernel_mat->rows;
	int kernel_cols = kernel_mat->cols;
	int dst_row = 0, dst_cols = 0, edge_row = 0, edge_cols = 0;
	int i,j, kernel_i,kernel_j,src_i,src_j;
	fIvMat* ptr_dst_mat = NULL;
	
	switch(shape){
		case FIV_CONV2_SHAPE_FULL:	
			
			dst_row = src_row + kernel_row - 1;
			dst_cols = src_cols + kernel_cols - 1;		
			edge_row = kernel_row - 1;
			edge_cols = kernel_cols - 1;
			break;
			
		case FIV_CONV2_SHAPE_SAME:
			
			dst_row = src_row;
			dst_cols = src_cols;
			edge_row = (kernel_row - 1) / 2;
			edge_cols = (kernel_cols - 1) / 2;
			break;
			
		case FIV_CONV2_SHAPE_VALID:
			
			dst_row = src_row - kernel_row + 1;
			dst_cols = src_cols - kernel_cols + 1;
			edge_row = edge_cols = 0;
			break;
			
	}
	
	ptr_dst_mat = fIv_create_mat(dst_row, dst_cols, FIV_64FC1);
	*dst_mat = ptr_dst_mat;
	
	for (i = 0; i < dst_row; i++) {	
		ivf64* ptr_dst_line_i = (ivf64* )fIv_get_mat_data_at_row(ptr_dst_mat, i);	
		for (j = 0; j < dst_cols; j++) {		
			ivf64 sum = 0;
			
			kernel_i = kernel_row - 1 - FIV_MAX(0, edge_row - i);
			src_i = FIV_MAX(0, i - edge_row);
			
			for (; kernel_i >= 0 && src_i < src_row; kernel_i--, src_i++) {
				
				ivf64* ptr_src_line_i,*ptr_kernel_line_i;
				
				kernel_j = kernel_cols - 1 - FIV_MAX(0, edge_cols - j);
				src_j = FIV_MAX(0, j - edge_cols);
				
				ptr_src_line_i = (ivf64*)fIv_get_mat_data_at_row(src_mat, src_i);
				ptr_kernel_line_i = (ivf64*)fIv_get_mat_data_at_row(kernel_mat, kernel_i);
				
				ptr_src_line_i += src_j;
				ptr_kernel_line_i += kernel_j;
				
				for (; kernel_j >= 0 && src_j < src_cols; kernel_j--, src_j++){
					sum += *ptr_src_line_i++ * *ptr_kernel_line_i--;
					}
			}			
			ptr_dst_line_i[j] = sum;
		}
	}
}


FIV_ALIGNED(16) ivf64 ker_data[4*4] = {0.1,0.2,0.3,0.4,
									   0.5,0.6,0.7,0.8,
									   0.9,1.0,1.1,1.2,
									   1.3,1.4,1.5,1.6};



void test_conv2()
{
	fIvMat* src_mat = fIv_create_mat_magic(8, FIV_64FC1); // 8x8 magic matrix
	fIvMat* kernel_mat = fIv_create_mat_header(4, 4, FIV_64FC1);

	fIvMat* dst_mat = NULL;
	fIv_set_mat_data(kernel_mat, ker_data, (sizeof(ivf64)) * 4 * 4);

	fIv_conv2(&dst_mat, src_mat, kernel_mat, FIV_CONV2_SHAPE_FULL);

	fIv_export_matrix_data_file(dst_mat,"dst_mat_4x4-full.txt", 1);


	fIv_release_mat(&src_mat);
	fIv_release_mat(&kernel_mat);
	fIv_release_mat(&dst_mat);



}

int main()
{
	test_conv2();

	return 0;
}


本文转载自:http://www.cnblogs.com/celerychen/p/3967048.html

共有 人打赏支持
abcijkxyz
粉丝 61
博文 6196
码字总数 1876
作品 0
深圳
项目经理
稀疏矩阵二维卷积快速算法 conv2源码

各位同学,谁有matlab 函数 conv2源码,或者是稀疏矩阵二维卷积快速算法,我最近需要写稀疏矩阵二维卷积快速算法的C程序,急,拜托啦!!

王大海
2012/04/10
614
4
LeNet在caffe中的实现分析

文章作者:Tyan 博客:noahsnail.com | CSDN | 简书 本文主要是对Caffe中mnist数据集上训练的LeNet模型进行结构分析和可视化。

Quincuntial
2017/07/04
0
0
人工智能教程009:创建一个卷积神经网络(4)

编程实现 权重初始化 为了创建这个模型,我们需要创建大量的权重和偏置项。这个模型中的权重在初始化时应该加入少量的噪声来打破对称性以及避免0梯度。由于我们使用的是ReLU神经元,因此比较...

韦东沛
05/19
0
0
【转】CNN卷积神经网络_ GoogLeNet 之 Inception(V1-V4)

http://blog.csdn.net/diamonjoyzone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with Convolutions 2. Inception[V2]: Batch Normalization: Accelerating Deep Netw......

oldpan
2017/11/20
0
0
用Excel理解神经网络

为了简化卷积神经网络这个概念,我将试着针对在开发深度学习模型过程中所做的运算进行解释。要查阅这方面更多的内容,我建议在线搜索,因为网上的信息很多很多(像这样视频)。本文的这个解释...

【方向】
2017/12/05
0
0

没有更多内容

加载失败,请刷新页面

加载更多

day92-20180918-英语流利阅读-待学习

健身最大的敌人不是懒惰,而是逞强 Daniel 2018-09-19 1.今日导读 还记得 2008 年北京奥运会运动员刘翔的退赛风波吗?那天几乎所有中国人都将视线聚焦在了鸟巢体育馆 110 米栏的项目上,迫不...

飞鱼说编程
20分钟前
1
0
70.shell的函数 数组 告警系统需求分析

20.16/20.17 shell中的函数 20.18 shell中的数组 20.19 告警系统需求分析 20.16/20.17 shell中的函数: ~1. 函数就是把一段代码整理到了一个小单元中,并给这个小单元起一个名字,当用到这段...

王鑫linux
今天
3
0
分布式框架spring-session实现session一致性使用问题

前言:项目中使用到spring-session来缓存用户信息,保证服务之间session一致性,但是获取session信息为什么不能再服务层获取? 一、spring-session实现session一致性方式 用户每一次请求都会...

WALK_MAN
今天
6
0
C++ yield()与sleep_for()

C++11 标准库提供了yield()和sleep_for()两个方法。 (1)std::this_thread::yield(): 线程调用该方法时,主动让出CPU,并且不参与CPU的本次调度,从而让其他线程有机会运行。在后续的调度周...

yepanl
今天
4
0
Java并发编程实战(chapter_3)(线程池ThreadPoolExecutor源码分析)

这个系列一直没再写,很多原因,中间经历了换工作,熟悉项目,熟悉新团队等等一系列的事情。并发课题对于Java来说是一个又重要又难的一大块,除非气定神闲、精力满满,否则我本身是不敢随便写...

心中的理想乡
今天
55
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部