文档章节

O(1)效率的表面模糊算法优化。

abcijkxyz
 abcijkxyz
发布于 2016/11/22 16:41
字数 2200
阅读 6
收藏 0

      本文的完整VS2013代码下载地址(解压密码本人博客名):http://files.cnblogs.com/files/Imageshop/SurfaceBlur.rar

      很久没有写文章了,主要是最近一段时间没有以前那么多空暇空间,内存和CPU占用率一致都很高,应前几日群里网友的要求,今天发个表面模糊的小程序来找回之前写博客的热情吧。

      国内我认为,破解表面模糊的原理的最早作者是我一直很崇拜的一位女士,她不会编程,英文也不怎么好,仅凭计算器和Excel两个工具破解了PS了很多  算法,真是个巾帼英雄。

      详见地址:http://www.missyuan.com/thread-428384-1-1.htm

      网上的有关该算法的matlab实现参考:http://www.cnblogs.com/tiandsp/archive/2012/11/06/2756441.html

      用C实现的参考:http://blog.csdn.net/maozefa/article/details/8270990

      表面模糊是属于典型的EPF滤波器中的一种,在PS的框架下好像也只有这一种自带的EPF算法,其核心也是数卷积的范畴,只是卷积的核是随着内容而变的,也属于方形半径内的算法,借助于直方图是可以做到于参数无关的O(1)算法。关于直方图的相关框架参考我的博文:任意半径局部直方图类算法在PC中快速实现的框架。, 但本文代码对其做了稍许改动。     

      为了表述方便,我们以灰度图像为例进行说明。首先,表面模糊有两个参数,半径Radius和阈值Threshold。 如果我们知道了以某点为中心,半径为Radius范围内的直方图数据Hist,以及该点的像素值,那根据原始的算法,其计算公式为:

//  最原始的算法
void Calc(unsigned short *Hist, unsigned char Value, int Threshold, unsigned char *&Pixel) { int Weight, Sum = 0, Divisor = 0; for (int Y = 0; Y < 256; Y++) { Weight = Hist[Y] * (2500 - abs(Y - Value) * 1000 / Threshold); if (Weight < 0) Weight = 0; Sum += Weight * Y; Divisor += Weight; } if (Divisor > 0) *Pixel = (Sum + (Divisor >> 1)) / Divisor; }

   注意这里我们为了减少浮点计算,将权重的计算公式放大了2500倍以便进行定点化,同时必须在最后增加一个Divisor > 0的判断,因为当Threshold很小时,可能会出现Divisor为0的现象。

     上述代码针对1000*1000的灰度图的执行时间约为1250ms,其中直方图的更新时间只有约50ms,速度难以接受。

     分析计算方法1,很明显权重计算的几个加减乘除以及下面的那句判断是比较耗时的,而其只是Y-Value的一个函数,因此,我们可以提前建立一个表,该表的索引范围从Min[Y - Value]到Max[Y - Value]之间,很明显,这个范围是[-255, 255],因此,建立如下的一个查找表:

 

for (int Y = -255; Y <= 255; Y++)
{
    int Factor = (2500 - abs(Y) * 1000 / Threshold);       
    if (Factor < 0) Factor = 0;
    Intensity[Y + 255] = Factor;
}

  有了这个查找表,我们来实现第二个版本的算法如下:

//    改进后的算法
unsigned char Calc2(unsigned short *Hist, unsigned char Value, unsigned short *Intensity)
{
    int Weight = 0, Sum = 0, Divisor = 0;
    unsigned short *Offset = Intensity + 255 - Value;
    for (int Y = 0; Y < 256; Y++)
    {
        Weight = Hist[Y] * Offset[Y];
        Sum += Weight * Y;
        Divisor += Weight;
    }
    if (Divisor > 0)
        return (Sum + (Divisor >> 1)) / Divisor;        //    四舍五入
    else
        return Value;
}

  同样大小的图,执行时间为350ms,速度提高约为3倍。

      我们接着来思考问题,上述有256个循环,如果我们将循环手动展开,会不会有提高呢, 我们先把代码更改如下:

//    优化后的算法
unsigned char Calc3(unsigned short *Hist, unsigned char Value, unsigned short *Intensity)       
{
    int Weight = 0, Sum = 0, Divisor = 0;
    unsigned short *Offset = Intensity + 255 - Value;
    Weight = Hist[0] * Offset[0];
    Sum += Weight * 0;  Divisor += Weight;        //    能不能用使用指令集的并行,没有去测试了
    Weight = Hist[1] * Offset[1];
    Sum += Weight * 1;  Divisor += Weight;
    Weight = Hist[2] * Offset[2];
    Sum += Weight * 2;  Divisor += Weight;
    Weight = Hist[3] * Offset[3];
    Sum += Weight * 3;  Divisor += Weight;
   /////////////////////////// ............................................................................
    Weight = Hist[251] * Offset[251];
    Sum += Weight * 251;  Divisor += Weight;
    Weight = Hist[252] * Offset[252];
    Sum += Weight * 252;  Divisor += Weight;
    Weight = Hist[253] * Offset[253];
    Sum += Weight * 253;  Divisor += Weight;
    Weight = Hist[254] * Offset[254];
    Sum += Weight * 254;  Divisor += Weight;
    Weight = Hist[255] * Offset[255];
    Sum += Weight * 255;  Divisor += Weight;
    if (Divisor > 0)
        return (Sum + (Divisor >> 1)) / Divisor;        //    四舍五入
    else
        return Value;
}

  为表述方便,中间省略了一些代码。

      测试结果为250ms,又快了一点点,为什么呢,我分析认为第一是减少了循环计数的时间,第二循环展开的 乘以 常数会被CPU优化为相关的移位或其他操作,而Calc2内部编译器是无法优化的。

      这样的函数系统一般是不会内联的,即使你在函数前面加上inline标识符,但是你可以在前面加上__forceinline标识,强制他内联,但是如果你这样做,你会发现速度反而会严重下降,为什么,请大家自行分析。

      我们在自己仔细看看,上面的循环很容易用SSE函数实现,既然我们的直方图的获取和更新利用了SSE,这里为什么不用呢,这样就诞生了我们的Calc4函数。

//    用SSE优化的算法
unsigned char Calc4(unsigned short *Hist, unsigned char Value, unsigned short *Intensity, unsigned short *Level)
{
    unsigned short *Offset = Intensity + 255 - Value;
    __m128i SumS = _mm_setzero_si128();
    __m128i WeightS = _mm_setzero_si128();
    for (int K = 0; K < 256; K += 8)
    {
        __m128i H = _mm_load_si128((__m128i const *)(Hist + K));
        __m128i L = _mm_load_si128((__m128i const *)(Level + K));                //    有能力可以使用256位的AVX寄存器
        __m128i I = _mm_loadu_si128((__m128i const *)(Offset + K));
        SumS = _mm_add_epi32(_mm_madd_epi16(_mm_mullo_epi16(L, I), H), SumS);
        WeightS = _mm_add_epi32(_mm_madd_epi16(H, I), WeightS);
    }
    const int *WW = (const int *)&WeightS;
    const int *SS = (const int *)&SumS;

    int Sum = SS[0] + SS[1] + SS[2] + SS[3];
    int Divisor = WW[0] + WW[1] + WW[2] + WW[3];
    if (Divisor > 0)
        return (Sum + (Divisor >> 1)) / Divisor;        //    四舍五入
    else
        return Value;
}

  关于上面几个SSE函数的使用,我不想多谈,也没啥难易理解的,注意其中的Level是我们为了方便,预定义的一个表,其形式如下:

for (int Y = 0; Y < 256; Y++)    Level[Y] = Y;            //    这个是为CalcSSE方便的使用的,其他两可以删除掉这里

     不定义这个也应该可以由其他的SSE函数构造k/k+1/k+2/k+3/k+4/k+5/k+6/k+7这样的__m128i变量,我这里这样做只是为了方便,你也可以自己更改下。

     我们直接把Calc4嵌入到程序中,运行,发现运行时间降低到了100ms,比Calc3有提高了2倍多,但是效果似乎不对,怎么回事呢。

     这主要是因为上述的SSE函数是针对unsigned short类型,而我们构造的Intensity数据较大,进行乘法后会超出unsigned short所能表达的范围,因此我们需要改动Intensity的定义:

    //    为了SSE里不溢出,把这里的数据变小,当然这样算法的准确度降低了,但是为了速度.......
    for (int Y = -255; Y <= 255; Y++)
    {
        int Factor = (255 - abs(Y) * 100 / Threshold);        
        if (Factor < 0) Factor = 0;
        Intensity[Y + 255] = Factor / 2;
    }

  最后一个除以2估计是因为SSE内部还是按照signed short处理的,这样做会导致算法的精度降低。

     经过上述改动,效果就正确了。

     对于彩色图像,一种做法就是直接扩展现在单通道的代码,让其支持三通道,另外一个办法就是把图像先拆分成3通道独立的数据,然后没通道独立处理,处理完成后再合成,这样做有两个好处,第一是代码复用;第二就是如果支持Openmp或者其他的并行库,可以让3通道并行起来执行。但是也有2个不足,第一是内存占用会增加很多,因为这种算法是不支持In-Place操作的,所以必须分配6份单通道的数据,而算法内部分配的内存由于并行的关系也要增加一些(不是三倍),及时考虑到可以把其中三个通道的数放置到Dest中,也会增加3份通道的数据,这对于某些设备可能是难以接受的(比如低端的安卓机)。具体如何使用就看应用场景了。 

      针对实际的应用,一种可选的进一步加速的方式就是把图像的色阶范围进一步缩小,比如由256色阶变为128或者64色阶,这样理论上还可以在快2倍到4倍,不过效果会稍有下降,一般128位时还是可以接受的。

 

         

     我看到很多人转载我的文章,我很感谢,但是很多人没有一点点的尊重别人的意识,转载请你在博文的最前面声明为转载,并不要更改本文下部赞助二维码。

    

 

    ****************************作者: laviewpbt   时间: 2015.10.24    联系QQ:  33184777 转载请保留本行信息**********************

本文转载自:http://www.cnblogs.com/Imageshop/p/5995093.html

共有 人打赏支持
abcijkxyz
粉丝 63
博文 6196
码字总数 1876
作品 0
深圳
项目经理
私信 提问
妹纸们的最爱 - 拓幻科技美颜SDK算法

现在各大手机制造商都在主推美颜效果,各种前后2000万像素,照亮你的美,各种逆光也清晰。其实这些看似神秘的美颜效果,除了依赖于手机像素之外,更重要的是攻城狮们对于美颜算法的构造。除了...

tillusory
01/31
0
0
高斯模糊算法的 C++ 实现

  2008 年在一个 PS 讨论群里,有网友不解 Photoshop 的高斯模糊中的半径是什么含义,因此当时我写了这篇文章:   对Photoshop高斯模糊滤镜的算法总结;   在那篇文章中,主要讲解了高...

hoodlum1980
2015/05/25
0
0
js算法初窥01(排序算法01-冒泡、选择、插入)

  排序,我想大家一定经历过或者正在经历着。或许你不懂算法,对排序算法一无所知,但是你一定用过一些第三方库的api来一键排序,那么,在你享受便捷的同时,你是否想过它的底层是如何实现...

zaking
05/15
0
0
【GPU精粹与Shader编程】(三) 《GPU Gems 1》全书核心内容提炼总结 · 下篇

本文由@浅墨_毛星云 出品,首发于知乎专栏,转载请注明出处 文章链接: https://zhuanlan.zhihu.com/p/36499291 题图背景来自《神秘海域4》。 系列文章前言 《GPU Gems》1~3 、《GPU Pro》1...

zhmxy555
05/06
0
0
数据结构与算法——学习整理记录

===注:此文由本人结合网上资源整理总结而来,仅代表个人的学习与理解,如有错漏,欢迎指正!=== # 1. 数据结构 ## 1.1 数据结构是什么? 数据结构,直白地理解,就是研究数据的逻辑关系与存...

elinuxboy
11/28
0
0

没有更多内容

加载失败,请刷新页面

加载更多

微服务分布式事务实现

https://www.processon.com/view/link/5b2144d7e4b001a14d3d2d30

WALK_MAN
今天
2
0
《大漠烟尘》读书笔记及读后感文章3700字

《大漠烟尘》读书笔记及读后感文章3700字: 在这个浮躁的社会里,你有多久没有好好读完一本书了? 我们总觉得自己和别人不一样,所以当看到别人身上的问题时,很少有“反求诸己”,反思自己。...

原创小博客
今天
3
0
大数据教程(9.5)用MR实现sql中的jion逻辑

上一篇博客讲解了使用jar -jar的方式来运行提交MR程序,以及通过修改YarnRunner的源码来实现MR的windows开发环境提交到集群的方式。本篇博主将分享sql中常见的join操作。 一、需求 订单数据表...

em_aaron
今天
3
0
十万个为什么之什么是resultful规范

起源 越来越多的人开始意识到,网站即软件,而且是一种新型的软件。这种"互联网软件"采用客户端/服务器模式,建立在分布式体系上,通过互联网通信,具有高延时(high latency)、高并发等特点...

尾生
今天
3
0
Terraform配置文件(Terraform configuration)

Terraform配置文件 翻译自Terraform Configuration Terraform用文本文件来描述设备、设置变量。这些文件被称为Terraform配置文件,以.tf结尾。这一部分将讲述Terraform配置文件的加载与格式。...

buddie
今天
5
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部