文档章节

选择性模糊及其算法的实现。

abcijkxyz
 abcijkxyz
发布于 2016/11/22 16:40
字数 1686
阅读 37
收藏 0

 

     测试源代码及工程下载地址(VS2010开发): SelectiveBlur.rar

     我们常见的模糊算法比如均值模糊、高斯模糊等其基本的过程都是计算一个像素周边的的某个领域内,相关像素的某个特征值的累加和及对应的权重,然后得到结果值。比如均值模糊的各像素的权重是一样的,而高斯模糊的权重和像素距离中心点的距离成高斯分布。这样的过程是无法区分出图像的边缘等信息的,导致被模糊后的图像细节严重丢失,一种简单的改进方式就是设置某个阈值,当领域像素和中心点像素的差距大于阈值时,设置其权重很小,甚至为0,这样对于本身比较平滑的区域,和原始的算法区别不大,而对于像素值变化较为明显的边缘地带,则能够有效地保留原始信息,这样就能起到降低噪音的同时保留边缘的信息。

      在实际的处理,小半径的领域往往处理能力有限,处理的结果不慎理想,而随着半径的增加,算法的直接实现耗时成平方关系增长,传统的优化方式由于这个判断条件的增加,已经无法继续使用,为了解决速度问题,我们可以采用基于直方图算法的优化,如果能够统计出领域内的直方图信息,上述的判断条件及权重计算就可以简单的用下述代码实现:

void Calc(unsigned short *Hist, int Intensity, unsigned char *&Pixel, int Threshold)        
{
    int K, Low, High, Sum = 0, Weight = 0;
    Low = Intensity - Threshold; High = Intensity + Threshold;
    if (Low < 0) Low = 0;
    if (High > 255) High = 255;
for (K = Low; K <= High; K++) { Sum += Hist[K] * K; Weight += Hist[K]; } if (Weight != 0) *Pixel = Sum / Weight; }

      注意在for之前的越界判断。

      在任意半径局部直方图类算法在PC中快速实现的框架一文中我们已经实现了任意半径恒长时间的直方图信息的获取,因此算法的执行时间只于上for循环中的循环量有关,也就是取决于Threshold参数,当Threshold取得越大,则最终的效果就越接近标准的模糊算法(上述代码是接近均值模糊),而在实际有意义的算法应用中而只有Threshold往往要取得较小才有保边的意义,因此,计算量可以得到适度的控制。

      如果要实现选择性的高斯模糊,则要在for循环中的权重项目中再乘以一个系数,当然这会增加一定的计算量。

      我们选择了一些其他保边滤波器的测试图像进行了测试,在效果上通过调整参数能得到相当不错的效果,举例如下:

       

                           原图                                                                               结果图: 参数r =10, Threshold = 16

       

                         原图                                                                               结果图: 参数r =10, Threshold = 16

       

                  原图                                                                               结果图: 参数r =10, Threshold = 16

       

               原图                                                                              结果图: 参数r =10, Threshold = 40

      在处理时间上,使用如上参数,在I3的笔记本电脑上测试,一幅1024*768的彩色图像使用时间约为250ms,如果考虑使用YUV颜色空间中只处理Y分量,则速度越能提升到100ms,在结果上,同同样参数的表面模糊比较,似乎很类似,但比表面模糊速度快了近3倍。 

      附上工程函数的主要代码:

/// <summary>     
/// 实现图像选择性图像模糊效果,O(1)复杂度,最新整理时间 2015.8.1。
/// </summary>
/// <param name="Src">需要处理的源图像的数据结构。</param>
/// <param name="Dest">保存处理后的图像的数据结构。</param>
/// <param name="Radius">指定模糊取样区域的大小,有效范围[1,127]。</param>
/// <param name="Threshold">选项控制相邻像素色调值与中心像素值相差多大时才能成为模糊的一部分,色调值差小于阈值的像素被排除在模糊之外,有效范围[1,255]。</param> 
IS_RET __stdcall SelectiveBlur(TMatrix *Src, TMatrix *Dest, int Radius, int Threshold, EdgeMode Edge)
{
    if (Src == NULL || Dest == NULL) return IS_RET_ERR_NULLREFERENCE;
    if (Src->Data == NULL || Dest->Data == NULL) return IS_RET_ERR_NULLREFERENCE;
    if (Src->Width != Dest->Width || Src->Height != Dest->Height || Src->Channel != Dest->Channel || Src->Depth != Dest->Depth || Src->WidthStep != Dest->WidthStep) return IS_RET_ERR_PARAMISMATCH;
    if (Src->Depth != IS_DEPTH_8U || Dest->Depth != IS_DEPTH_8U) return IS_RET_ERR_NOTSUPPORTED;
    if (Radius < 0 || Radius >= 127 || Threshold < 2 || Threshold > 255) return IS_RET_ERR_ARGUMENTOUTOFRANGE;

    IS_RET Ret = IS_RET_OK;

    if (Src->Data == Dest->Data)
    {
        TMatrix *Clone = NULL;
        Ret = IS_CloneMatrix(Src, &Clone);
        if (Ret != IS_RET_OK) return Ret;
        Ret = SelectiveBlur(Clone, Dest, Radius, Threshold, Edge);
        IS_FreeMatrix(&Clone);
        return Ret;
    }
    if (Src->Channel == 1)
    {
        TMatrix *Row = NULL, *Col = NULL;
        unsigned char *LinePS, *LinePD;
        int X, Y, K,  Width = Src->Width, Height = Src->Height;
        int *RowOffset, *ColOffSet;
        
        unsigned short *ColHist    = (unsigned short *)IS_AllocMemory(256 * (Width + 2 * Radius) * sizeof(unsigned short), true);    
        if (ColHist == NULL) {Ret = IS_RET_ERR_OUTOFMEMORY; goto Done8;}
        unsigned short *Hist    = (unsigned short *)IS_AllocMemory(256 * sizeof(unsigned short), true);    
        if (Hist == NULL) {Ret = IS_RET_ERR_OUTOFMEMORY; goto Done8;}

        Ret = GetValidCoordinate(Width, Height, Radius, Radius, Radius, Radius, Edge, &Row, &Col);        //    获取坐标偏移量
        if (Ret != IS_RET_OK) goto Done8;
    
        ColHist += Radius * 256;        RowOffset = ((int *)Row->Data) + Radius;        ColOffSet = ((int *)Col->Data) + Radius;                //    进行偏移以便操作

        for (Y = 0; Y < Height; Y++)
        {
            if (Y == 0)                                            //    第一行的列直方图,要重头计算
            {
                for (K = -Radius; K <= Radius; K++)                    
                {
                    LinePS = Src->Data + ColOffSet[K] * Src->WidthStep;
                    for (X = -Radius; X < Width + Radius; X++)
                    {
                        ColHist[X * 256 + LinePS[RowOffset[X]]]++;
                    }
                }
            }
            else                                                //    其他行的列直方图,更新就可以了
            {
                LinePS = Src->Data + ColOffSet[Y - Radius - 1] * Src->WidthStep;        
                for (X = -Radius; X < Width + Radius; X++)        // 删除移出范围内的那一行的直方图数据
                {
                    ColHist[X * 256 + LinePS[RowOffset[X]]]--;
                }

                LinePS = Src->Data + ColOffSet[Y + Radius] * Src->WidthStep;
                for (X = -Radius; X < Width + Radius; X++)        // 增加进入范围内的那一行的直方图数据
                {
                    ColHist[X * 256 + LinePS[RowOffset[X]]]++;
                }

            }

            memset(Hist, 0, 256 * sizeof(unsigned short));        //    每一行直方图数据清零先

            LinePS = Src->Data + Y * Src->WidthStep;
            LinePD = Dest->Data + Y * Dest->WidthStep;

            for (X = 0; X < Width; X++)
            {
                if (X == 0)
                {
                    for (K = -Radius; K <= Radius; K++)            //    行第一个像素,需要重新计算    
                        HistgramAddShort(ColHist + K * 256, Hist);
                }
                else
                {
                    HistgramSubAddShort(ColHist + RowOffset[X - Radius - 1] * 256, ColHist + RowOffset[X + Radius] * 256, Hist);  //    行内其他像素,依次删除和增加就可以了
                }
                Calc(Hist, LinePS[0], LinePD, Threshold);    
                
                LinePS++;
                LinePD++;
            }
        }
        ColHist -= Radius * 256;        //    恢复偏移操作
    Done8:
        IS_FreeMatrix(&Row);
        IS_FreeMatrix(&Col);
        IS_FreeMemory(ColHist);
        IS_FreeMemory(Hist);

        return Ret;
    }
    else
    {
        TMatrix *Blue = NULL, *Green = NULL, *Red = NULL, *Alpha = NULL;            //    由于C变量如果不初始化,其值是随机值,可能会导致释放时的错误。
        IS_RET Ret = SplitRGBA(Src, &Blue, &Green, &Red, &Alpha);
        if (Ret != IS_RET_OK) goto Done24;
        Ret = SelectiveBlur(Blue, Blue, Radius, Threshold, Edge);
        if (Ret != IS_RET_OK) goto Done24;
        Ret = SelectiveBlur(Green, Green, Radius, Threshold, Edge);
        if (Ret != IS_RET_OK) goto Done24;
        Ret = SelectiveBlur(Red, Red, Radius, Threshold, Edge);
        if (Ret != IS_RET_OK) goto Done24;                                            //    32位的Alpha不做任何处理,实际上32位的相关算法基本上是不能分通道处理的
        CopyAlphaChannel(Src, Dest);
        Ret = CombineRGBA(Dest, Blue, Green, Red, Alpha);
    Done24:
        IS_FreeMatrix(&Blue);
        IS_FreeMatrix(&Green);
        IS_FreeMatrix(&Red);
        IS_FreeMatrix(&Alpha);
        return Ret;
    }
}

 

 

****************************作者: laviewpbt   时间: 2015.8.1    联系QQ:  33184777 转载请保留本行信息**********************

 

本文转载自:http://www.cnblogs.com/Imageshop/p/4694540.html

共有 人打赏支持
abcijkxyz
粉丝 63
博文 6196
码字总数 1876
作品 0
深圳
项目经理
私信 提问
如何判断MYSQL索引的优劣呢?

最近看了一些关于索引优化的文章,包括<高性能mysql>书里关于索引的章节,看完之后对索引的优劣的判断和优化方法还是比较模糊. 比如关于索引的选择性,正常的来说索引的选择性越高,性能就...

Blacknc
08/08
206
1
PostgreSQL 一复合查询SQL优化例子 - (多个exists , 范围检索 , IN检索 , 模糊检索 组合)

标签 PostgreSQL , 多个exists , 范围检索 , IN检索 , 模糊检索 , 组合 , gin , recheck , filter , subplan 背景 当一个SQL包含复杂的多个exists , 范围检索 , IN检索 , 模糊检索 , 组合查询...

德哥
09/15
0
0
探索推荐引擎内部的秘密,第 3 部分: 深入推荐引擎相关算法 - 聚类 (三)

Canopy 聚类算法 Canopy 聚类算法的基本原则是:首先应用成本低的近似的距离计算方法高效的将数据分为多个组,这里称为一个 Canopy,我们姑且将它翻译为“华盖”,Canopy 之间可以有重叠的部...

东方神剑
2014/11/13
0
0
高斯模糊算法的 C++ 实现

  2008 年在一个 PS 讨论群里,有网友不解 Photoshop 的高斯模糊中的半径是什么含义,因此当时我写了这篇文章:   对Photoshop高斯模糊滤镜的算法总结;   在那篇文章中,主要讲解了高...

hoodlum1980
2015/05/25
0
0
封装个 Android 的高斯模糊组件

最近基于 Android StackBlur 开源库,根据自己碰到的需求场景,封装了个高斯模糊组件,顺便记录一下。 为什么要自己重复造轮子? 其实也谈不上重头自己造轮子,毕竟是基于大神的开源库,做了...

请叫我大苏
10/14
0
0

没有更多内容

加载失败,请刷新页面

加载更多

10分钟读懂阿里巴巴高级专家在Flutter Live2018的分享

作者:闲鱼技术-宗心 12月4日,google flutter团队宣布第一个flutter正式版本发布。次日,Flutter Live Beijing 会议上,google flutter团队邀请了在这一技术方案中重要的合作伙伴闲鱼团队分...

阿里云官方博客
14分钟前
1
0
RxJava window操作符

原文:https://github.com/Froussios/Intro-To-RxJava/blob/master/Part%204%20-%20Concurrency/3.%20Sequences%20of%20coincidence.md Sequences of coincidence Rx试图避免管道(pipeline)外......

woshixin
21分钟前
1
0
05.Beetl标签函数以及定界符、占位符介绍---《Beetl视频课程》

本期视频实现了博客的详情页面; 内容简介:使用了标签函数layout完成详情功能 一起学beetl目录:https://my.oschina.net/u/1590490?tab=newest&catalogId=6214598 作者:GK #标签函数 layo...

Gavin-King
22分钟前
1
0
谷歌浏览器的打印功能

var OpenWindow = window.open(""); OpenWindow.document.write("<HTML>"); OpenWindow.document.write("<HEAD>"); OpenWindow.document.write("<meta http-equiv=......

卖星星的小矮人
22分钟前
1
0
曼哈顿距离(Manhattan Distance )详解

概念 曼哈顿距离——两点在南北方向上的距离加上在东西方向上的距离,即d(i,j)=|xi-xj|+|yi-yj|。对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南...

hejunbinlan
27分钟前
2
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部