文档章节

颜色空间系列2: RGB和CIELAB颜色空间的转换及优化算法

abcijkxyz
 abcijkxyz
发布于 2016/11/22 16:39
字数 2563
阅读 7
收藏 0

       颜色空间系列代码下载链接:http://files.cnblogs.com/Imageshop/ImageInfo.rar (同文章同步更新)

      在几个常用的颜色空间中,LAB颜色空间是除了RGB外,最常用的一种之一,不同于RGB色彩空间,Lab 颜色被设计来接近人类视觉。它致力于感知均匀性,它的 L 分量密切匹配人类亮度感知。因此可以被用来通过修改 a 和 b 分量的输色阶来做精确的颜色平衡,或使用 L 分量来调整亮度对比。这些变换在 RGB 或 CMYK 中是困难或不可能的,它们建模物理设备的输出,而不是人类视觉感知。

     关于CIELAB颜色空间的更多原理说明,可见:http://en.wikipedia.org/wiki/Lab_color_space

     本文研究的重点是RGB和LAB之间的快速转换过程。

     首先,RGB和LAB之间没有直接的转换公式,其必须用通道XYZ颜色空间作为中间层,关于RGB和XYZ颜色空间的转换及优化,详见颜色空间系列1

     XYZ------>LAB转换公式如下:一般情况下我们认为Yn,Xn,Zn都为1。

 

     

其中

     

      在上述表达式中,X,Y,Z及t变量的取值范围都是[0,1],对应的L分量的取值范围为[0,100],A和B分量都为[-127,127],因此,如果把L拉升至[0,255],把A,B位移至于[0,255],就可以同RGB颜色空间表达为同一个范围了。即使这样映射后,一般来说,LAB各分量的结果仍为浮点数,这个和RGB不同,但是在很多情况下,为了速度计效率,我们这需结果的取整部分,得到类似于RGB空间的布局。因此,对这类结果的优化更有实际意义。

      关于这样的优化,OpenCv已经做了非常好的工作,各位看客也可以先看看OpenCv的代码,本文未直接沿用其优化,但本文的算法更简单明了,在保证结果无明显变化的同时,速度和效率都有30%以上的提升。

      第一步,我们来看看f(t)这个函数的优化,f(t)是个分段函数,如果直接在函数体中判断,会多一些跳转和比较语句,不利于CPU的流水线工作,因此,我考虑的第一步是是否能用查表法来做。

     在颜色空间系列1文章中,我们知道,转换后的XYZ值得范围是[0,255],而这里的t值范围为[0,1],把if t>(6/29)^3这个算法映射到[0,255],则为 if t>2.26 ,因为XYZ都为整数,即此条件和if t>2等价,可见这里会出现一些漏判点;考虑2.26这个数字的特点,如果我们在把这个结果放大4倍,即XYZ范围为[0,1020],则判断条件随之升级为if t>9.04,取整if t>9,则漏判现象大为减少。这是提的第一点。

     接着上面,这样的话我们就定义一个查找表,查找表大小应该和XYZ的域相同的,即上面的1020(我更喜欢1024),对于表中的元素值,为求速度,当然必须为int 类型,

也就是说,需要把计算出来的小数值放大一定倍数。这里不多说,见下面的代码:

for (I = 0; I < 1024; I++)
    {
        if (I > Threshold)
            LabTab[I] = (int)(Math.Pow((float)I / 1020, 1.0F / 3) * (1 << Shift) + 0.5 );
        else
            LabTab[I] = (int)((29 * 29.0 * I / (6 * 6 * 3 * 1020) + 4.0 / 29) * (1 << Shift) + 0.5 );
    }

     C#语言是强类型语言,一定要注意运算式中各变量的类型,比如上式中的1.0F/3,我常常写成1/3(这个的运算结果为0),结果往往是总觉得程序写得没问题,但运行效果就是不对,找半天BUG也找不到。

     I / 1020的目的还是把值映射到[0,1]范围的。 表达式最后的+0.5是因为(int)强制类型转换时向下取整的,+0.5则为四舍五入的效果。显然,这是我们需要的。

     OK,有了这个查找表,下面的过程就简单了,对于A,B分量,就是进行简单的乘法、移位及加法,而对于L分量,必须有一个放大的过程,而这个过程我们应该直接从其系数入手,如下所示:

const int ScaleLC = (int)(16 * 2.55 * (1 << Shift) + 0.5);
   const int ScaleLT = (int)(116 * 2.55 + 0.5);

     2.55即为放大倍数,注意116这个数字,由于,其后的 f(x)已经进行了放大,该数字就不能再放大了。

     通过以上分析,一个简单的而有高效转换算法就有了:

public static unsafe void ToLAB(byte* From, byte* To, int Length = 1)
    {
        if (Length < 1) return;
        byte* End = From + Length * 3;
        int X, Y, Z, L, A, B;
        byte Red, Green, Blue;
        while (From != End)
        {
            Blue = *From; Green = *(From + 1); Red = *(From + 2);
            X = (Blue * LABXBI + Green * LABXGI + Red * LABXRI + HalfShiftValue) >> (Shift - 2);  //RGB->XYZ放大四倍后的结果
            Y = (Blue * LABYBI + Green * LABYGI + Red * LABYRI + HalfShiftValue) >> (Shift - 2);
            Z = (Blue * LABZBI + Green * LABZGI + Red * LABZRI + HalfShiftValue) >> (Shift - 2);
            X = LabTab[X];          // 进行查表
            Y = LabTab[Y];
            Z = LabTab[Z];
            L = ((ScaleLT * Y - ScaleLC + HalfShiftValue) >>Shift);
            A = ((500 * (X - Y) + HalfShiftValue) >> Shift) + 128;
            B = ((200 * (Y - Z) + HalfShiftValue) >> Shift) + 128;
            *To = (byte)L;          // 不要把直接计算的代码放在这里,会降低速度
            *(To + 1) = (byte)A;    // 无需判断是否存在溢出,因为测试过整个RGB空间的所有颜色值,无颜色存在溢出
            *(To + 2) = (byte)B;
            From += 3;
            To += 3;
        }
    }

    再来看看反转的过程,即LAB-XYZ的算法,理论公式如下:

     

其中:

      

      注意,我这里说的转换有个前期条件,即LAB的数据是用类似于RGB空间的布局表达的,也就是说LAB各元素为byte类型。

      我曾自己的研究过这些算法,如果完全像上面那样靠整数乘法及移位来实现,主要的难度是t^3这个表达式的计算结果会超出int类型的表达范围,而如果用64位的long类型,在目前32位机器依旧占主流配置的情况下,速度会下降很多。因此,我最后的研究还是以空间换时间的方法来实现。具体分析如下:

      观察上式分析,Y的值只于L有关,而L由于我们的限定,只能取[0,255]这256个值,因此建立一个256个元素的查找表即可,而X及Z的值分别于L及A/B有关,需要建立256*256个元素的查找表即可,大约占用0.25MB的内存。查找表的建立如下:

for (I = 0; I < 256; I++)
    {
        T = I * Div116 + Add16;
        if (T > ThresoldF)
            Y = T * T * T;
        else
            Y = MulT * (T - Sub4Div29);
        TabY[I] = (int)(Y * 255 + 0.5);      // 映射到[0,255]
        for (J = 0; J < 256; J++)
        {
            X = T + Div500 * (J - 128);
            if (X > ThresoldF)
                X = X * X * X;
            else
                X = MulT * (X - Sub4Div29);
            TabX[Index] = (int)(X * 255 + 0.5);

            Z = T - Div200 * (J - 128);
            if (Z > ThresoldF)
                Z = Z * Z * Z;
            else
                Z = MulT * (Z - Sub4Div29);
            TabZ[Index] = (int)(Z * 255 + 0.5);
            Index++;
        }
    }

      最终的LAB-RGB转换算法如下:

public static unsafe void ToRGB(byte* From, byte* To, int Length = 1)
    {
        if (Length < 1) return;
        byte* End = From + Length * 3;
        int L, A, B, X, Y, Z;
        int Blue, Green, Red;
        while (From != End)
        {
            L = *(From); A = *(From + 1); B = *(From + 2);
            X = TabX[L * 256 + A];      // *256编译后会自动优化为移位的
            Y = TabY[L];
            Z = TabZ[L * 256 + B];
            Blue = (X * LABBXI + Y * LABBYI + Z * LABBZI + HalfShiftValue) >> Shift;  
            Green = (X * LABGXI + Y * LABGYI + Z * LABGZI + HalfShiftValue) >> Shift;
            Red = (X * LABRXI + Y * LABRYI + Z * LABRZI + HalfShiftValue) >> Shift;
            if (Red > 255) Red = 255; else if (Red < 0) Red = 0;
            if (Green > 255) Green = 255; else if (Green < 0) Green = 0;            // 需要有这个判断
            if (Blue > 255) Blue = 255; else if (Blue < 0) Blue = 0;
            *(To) = (byte)Blue;
            *(To + 1) = (byte)Green;
            *(To + 2) = (byte)Red;
            From += 3;
            To += 3;
        }
    }

      通过以上的分析,可以看出,这个转换的过程代码很简单,清晰,而且效率不菲,对一副4000*3000的数码照片进行RGB->LAB,然后再LAB->RGB算法本体的时间只有250ms。

     还有几个优化的地方就是我的所有的查找表都不是用的C#的数组,而是直接分配内存,这是因为C#的数组在很多情况下会有一个判断是否越界的汇编码,而用非托管内存则不会。

     比如,以下是用非托管内存的数组访问的反汇编:

static int* TabX = (int*)Marshal.AllocHGlobal(256 * 256 * 4);    // 这是原始的定义
X = TabX[L * 256 + A];      // *256编译后会自动优化为移位的
00000037  mov         eax,edi 
00000039  shl         eax,8          // 看到这里的移位没有
0000003c  add         eax,edx 
0000003e  mov         edx,dword ptr ds:[005A1F0Ch] 
00000044  mov         eax,dword ptr [edx+eax*4] 
00000047  mov         dword ptr [ebp-14h],eax

      而用C#的数组方式生产的汇编如下:

static int[] TabX = new int[256 * 256];     // 这是原始的定义
X = TabX[L * 256 + A];      // *256编译后会自动优化为移位的
0000003c  mov         eax,edi 
0000003e  shl         eax,8 
00000041  add         eax,edx 
00000043  mov         edx,dword ptr ds:[02A27C68h]   
00000049  cmp         eax,dword ptr [edx+4]   // 多出这两句代码
0000004c  jae         00000133 
00000052  mov         eax,dword ptr [edx+eax*4+8] 
00000056  mov         dword ptr [ebp-14h],eax

      其实还有很多细节上的优化的东西,比如语句的顺序的讲究,有的时候就是调换下不同行的语句,程序的执行效率就有很多的不同,这主要是编译器的优化不同造成的,比如适当的顺序会让编译器选择某个常用变量为寄存器变量。 还比如有人喜欢用下面的代码

*To++ = (byte)L;
  *To++ = (byte)A;
  *To++ = (byte)B;

     来代替:

*To = (byte)L;          
 *(To + 1) = (byte)A;    
 *(To + 2) = (byte)B;
 To += 3;

     虽然代码看上去简洁了,可你执行后就知道速度反而慢了,为什么,我想我会在适当时候写一些关于C#优化方面的粗浅文章在对此进行解释吧。

     最后附上一些处理的效果,还是拿系列1文章中那些崇洋的新贵门来做实验吧:

     原图:

      

     转换后的综合图像:

     

    L通道:

     

     A通道: 

     

     B通道:

     

     同样的道理,上述快速算法如果进行多次转换,必然也存在精度上的损失。

     LAB空间在以后的肤色检测文章中还会有提到。

 

'*********************************************************************

  转载请保留以下信息:

  作者: laviewpbt

  时间:2013.2.2   11点于家中

  QQ:33184777

  E-Mail : laviewpbt@sina.com

本文转载自:http://www.cnblogs.com/Imageshop/archive/2013/02/02/2889897.html

共有 人打赏支持
abcijkxyz
粉丝 64
博文 6196
码字总数 1876
作品 0
深圳
项目经理
将RGB值转换为灰度值的简单算法

原文地址:点击打开链接 RGB是如何转换为灰度的?这是让人困惑已久的一道难题 1、RGB复合通道转灰度:转换后的色阶值只与RGB空间有关,而与作为目的地的灰度空间无关。也就是说,只要当前的R...

floatdreamed
01/09
0
0
【AI超级美发师】深度学习算法打造染发特效(附代码)

【新智元导读】如今,在类似天天P图、美图秀秀等手机APP中,给指定照片或视频中的人物更换头发颜色已经是再正常不过的事情了。那么本文便介绍了该功能背后如AI头发分割模块、头发换色、颜色增...

技术小能手
08/03
0
0
YUV / RGB 格式分析及快速查表算法设计

1 前言 自然界的颜色千变万化,为了给颜色一个量化的衡量标准,就需要建立色彩空间模型来描述各种各样的颜色,由于人对色彩的感知是一个复杂的生理和心理联合作用的过程,所以在不同的应用领...

鉴客
2011/10/01
389
0
​转换色彩空间JavaScript插件--ColorConverter.js

转换色彩空间JavaScript插件 目前支持的色彩空间 RGB RGBA => RGB (单向) CMY CMYK HSV (HSB) HSL XYZ Lab (CIELab) LCH LUV...

Rijn
2015/06/09
445
0
Metal视频处理——绿幕视频合成

前言 Metal入门教程总结 Metal图像处理——直方图均衡化 本文介绍如何用Metal把一个带绿幕的视频和一个普通视频进行合并。 正文 绿幕视频合成可以分为两步,首先是把视频读取成视频帧并做好对...

落影loyinglin
09/16
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Generator-ES6

基本概念 Generator 函数是 ES6 提供的一种异步编程解决方案,语法行为与传统函数完全不同。 Generator 函数有多种理解角度。语法上,首先可以把它理解成,Generator 函数是一个状态机,封装...

简心
20分钟前
2
0
FullCalendar日历插件说明文档

普通显示设置 属性 描述 默认值 header 设置日历头部信息。 如果设置为false,则不显示头部信息。包括left,center,right左中右三个位置,每个位置都可以对应以下不同的配置: title: 显示当...

ada_young
20分钟前
0
0
Redis知识总结--string的内部实现

SDS(Simple Dynamic String) String的数据结构是一个字节数组,但简单的获取数组长度的时间复杂度就是O(n),这对于单线程的redis来讲是不能接受的,因此string在redis中的实现是SDS类,SDS类...

looqy
31分钟前
1
0
SpringBoot开发案例之整合Dubbo分布式服务

前言 在 SpringBoot 很火热的时候,阿里巴巴的分布式框架 Dubbo 不知是处于什么考虑,在停更N年之后终于进行维护了。在之前的微服务中,使用的是当当维护的版本 Dubbox,整合方式也是使用的 ...

Java干货分享
36分钟前
2
0
美团团购订单系统优化记

团购订单系统简介 美团团购订单系统主要作用是支撑美团的团购业务,为上亿美团用户购买、消费提供服务保障。2015年初时,日订单量约400万~500万,同年七夕订单量达到800万。 目标 作为线上S...

Skqing
40分钟前
0
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部