文档章节

四轴飞控系列-电机PWM控制驱动

 土家二少
发布于 2016/10/19 17:41
字数 1105
阅读 25
收藏 0
点赞 0
评论 0

四轴飞控系列-电机PWM控制


四轴

硬件原理

四轴通过定时器PWM来控制MOS管开关,从而控制电机的开关,通过调整其占空比来控制电机的转速,其原理图如下

原理图


软件部分

1.STM32定时器

定时器

2.常见寄存器

TIMx_CNT:脉冲计数器
TIMx_ARR:重载寄存器(保存定时器的溢出值)
TIMx_CCR:捕获/比较寄存器

3.基本定时器工作原理

工作时,脉冲计数器TIMx_CNT由时钟触发进行计数,当TIMx_CNT的计数值X等于重载寄存器 TIMx_ARR 中保存的数值N时,产生溢出事件,可触发中断或 DMA 请求。然后 TIMx_CNT 的值重新被置为 0,重新向上计数。

时钟源TIMx_CLK经过PSC预分频器输入至脉冲计数器TIMx_CNT,基本定时器只能工作在向上计数模式,在重载寄存器 TIMx_ARR 中保存的是定时器的溢出值。

4.PWM输出过程

若配置脉冲计数器TIMx_CNT为向上计数,而重载寄存器TIMx_ARR被配置为N,即TIMx_CNT的当前计数值数值X在TIMxCLK时钟源的驱动下不断累加,当 TIMx_CNT的数值 X 大于 N 时,会重置TIMx_CNT 数值为 0 并重新计数。

而在 TIMx_CNT 计数的同时,TIMx_CNT 的计数值 X 会与比较寄存器 TIMx_CCR 预先存储的数值 A 进行比较。当脉冲计数器 TIMx_CNT 的数值 X 小于比较寄存器TIMx_CCR 的值 A 时,输出高电平(或低电平);相反地,当脉冲计数器的数值 X 大于或等于比较寄存器的值 A 时,输出低电平(或高电平)。

如此循环,得到的输出脉冲周期就为重载寄存器 TIMx_ARR 存储的数值(N+1)乘以触发脉冲的时钟周期,其脉冲宽度则为比较寄存器 TIMx_CCR 的值 A 乘以触发脉冲的时钟周期,即输出 PWM 的占空比为 A/(N+1)

PWM 输出模式,图中为重载寄存器 TIMx_ARR 被配置为 N=8,向上计数 ;比较寄存器 TIMx_CCR 的值被设置为 4、8、大于 8、等于 0 时的输出时序图。图中OCxREF 即为 GPIO 引脚的输出时序、CCxIF 为触发中断的时序。

PWM输出

#####代码分析

moto.c

/**
  *----------------------------------------------------------------------------*
  * @file    moto.c
  * @author  Jerry.XL
  * @version V1.0
  * @date    2016-07-24
  * @brief   MOTO驱动
  *----------------------------------------------------------------------------*
  * @attention
  *		| PA0--MOTO1 | PA2--MOTO2 |
  *		| PB3--MOTO3 | PB4--MOTO4 |
  *
  *----------------------------------------------------------------------------*
  */
  
#include "moto.h"   
 
int16_t MOTO1_PWM = 0;
int16_t MOTO2_PWM = 0;
int16_t MOTO3_PWM = 0;
int16_t MOTO4_PWM = 0;
/**----------------------------------------------------------------------------*
  *	  函 数 名: MotorPwmFlash
  *	  功能说明: 更新四路PWM值
  *	  形    参:MOTO1_PWM,MOTO2_PWM,MOTO3_PWM,MOTO4_PWM
  *	  返 回 值: 无
  *----------------------------------------------------------------------------*
  *	  备	注:
  *			四路PWM由定时器2输出,输入范围0-999
***----------------------------------------------------------------------------*/
void MotorPwmFlash(int16_t MOTO1_PWM,int16_t MOTO2_PWM,int16_t MOTO3_PWM,int16_t MOTO4_PWM)
{	
	/* 限定输入不能小于0,大于999 */
     if(MOTO1_PWM>=Moto_PwmMax)	MOTO1_PWM = Moto_PwmMax;
     if(MOTO2_PWM>=Moto_PwmMax)	MOTO2_PWM = Moto_PwmMax;
     if(MOTO3_PWM>=Moto_PwmMax)	MOTO3_PWM = Moto_PwmMax;
     if(MOTO4_PWM>=Moto_PwmMax)	MOTO4_PWM = Moto_PwmMax;
     if(MOTO1_PWM<=0)	MOTO1_PWM = 0;
     if(MOTO2_PWM<=0)	MOTO2_PWM = 0;
     if(MOTO3_PWM<=0)	MOTO3_PWM = 0;
     if(MOTO4_PWM<=0)	MOTO4_PWM = 0;

    /* 修改CCR寄存器,调整PWM占空比 */
    TIM2->CCR1 = MOTO1_PWM;		
    TIM2->CCR2 = MOTO2_PWM;
    TIM2->CCR3 = MOTO3_PWM;
    TIM2->CCR4 = MOTO4_PWM;        //对定时器寄存器赋值
}

/**----------------------------------------------------------------------------*
  *	  函 数 名: MotorInit
  *	  功能说明: 输出PWM的定时器2初始化
  *	  形    参:无
  *	  返 回 值: 无
  *----------------------------------------------------------------------------*
  *	  备	注:
  *			调用该函数,即初始化定时器2为PWM输出模式
***----------------------------------------------------------------------------*/
void MotorInit(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
    TIM_OCInitTypeDef  TIM_OCInitStructure;
	
    uint16_t PrescalerValue = 0;    //控制电机PWM频率(预分频系数)
        
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //打开外设A的时钟和复用时钟
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 ,ENABLE);  //打开定时器2时钟  
     
    // 设置GPIO功能,设置PA0|1|2|3为推挽输出
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
      
    // 复位定时器。
    TIM_DeInit(TIM2);
    
    // 配置计时器。
    PrescalerValue = (uint16_t) (SystemCoreClock / 24000000) +1;
    
	/* 实际周期计算方法 */
    // T=TIM_Prescaler*TIM_Period/TIMx_CLK

	TIM_TimeBaseStructure.TIM_Period = 999;		            //计数上线(定时周期)	
    TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;	//定时器的预分频值
    TIM_TimeBaseStructure.TIM_ClockDivision = 0;	
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数
    
    TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure);
    
    
    // 配置TIM2为PWM输出模式
    TIM_OCStructInit(&TIM_OCInitStructure);
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
    TIM_OCInitStructure.TIM_Pulse = 0;    //0
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
    
    TIM_OC1Init(TIM2,&TIM_OCInitStructure);
    TIM_OC2Init(TIM2,&TIM_OCInitStructure);
    TIM_OC3Init(TIM2,&TIM_OCInitStructure);
    TIM_OC4Init(TIM2,&TIM_OCInitStructure);
    
    TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);
    TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable);
    TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable);
    TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Enable);
    
    // 启动计时器。
    TIM_Cmd(TIM2,ENABLE);
}

/*********************************************END OF FILE**********************/

moto.h

#ifndef __MOTO_H
#define	__MOTO_H

#include "stm32f10x.h"

#include "moto.h" 

#define Moto_PwmMax 999
void MotorInit(void);
void MotorPwmFlash(int16_t MOTO1_PWM,int16_t MOTO2_PWM,int16_t MOTO3_PWM,int16_t MOTO4_PWM);

#endif /* __MOTO_H */

© 著作权归作者所有

共有 人打赏支持
粉丝 0
博文 3
码字总数 2640
作品 0
深圳
四轴飞行器基本组成及其飞行原理详解

近日,自己组装了一台 ; 组装完后,便想深究其原理;避免只是 ; 查阅资料后,便在其他文章的基础上,将此文 出来; 文章末尾有参考文章列表,同时感谢原作者的创作; 先上一张自己组装的 ...

qq_35723367 ⋅ 03/29 ⋅ 0

采用超级电容器单独供电的BLDC调速控制系统设计分析与实现

摘要 本文针对第十二届全国大学生智能汽车竞赛电磁节能组,设计一种采用超级电容器单独供电的无刷直流电机(BLDC)调速控制系统。该装置在实现超级电容器充分放电及对电能的最大利用的前提下,...

qq_38593854 ⋅ 04/20 ⋅ 0

四轴飞行器的原理和组成

四轴飞行器的原理和组成 在真正开始四轴飞行器(四旋翼飞行器)的制作之前,我们先来了解一下四轴飞行器的基本组成和原理。除了了解必要的理论原理外,还需要知道四轴飞行器的四个部分——机...

大学霸 ⋅ 2015/03/18 ⋅ 0

stm32制作的微型雕刻机 ,你可以不?

附上:点击参考 购买元器件附带3D封装:https://weidian.com/?userid=1238350417&wfr=c&ifr=shopdetail 看到网上有好多做微型激光雕刻机的DIY,手头正好有几个拆下来的笔记本光驱,把光驱里的...

javajava2017 ⋅ 04/05 ⋅ 0

使用者——初见Pixhawk

(是什么) Pixhawk简单介绍 PixHawk是著名飞控厂商3DR推出的新一代独立、开源、高效的飞行控制器,前身为APM飞控,不仅提供了丰富的外设模块和可靠的飞行体验,有能力的爱好者还可在其基础上...

CSDNhuaong ⋅ 2017/09/11 ⋅ 0

【无人机】一文读懂无人机飞行原理

来源:小小马带你学 一、无人机的飞行原理 旋翼和轮子一样,是一项神奇的发明。 四旋翼无人机更是化作了航拍机,满足了许多普通人关于天空的想象。 旋翼之所以能飞,玩过竹蜻蜓的朋友应该都知...

np4rhi455vg29y2 ⋅ 01/01 ⋅ 0

数码舵机常见问题原理分析

一、数码舵机与模拟舵机的区别 传统模拟舵机和数字比例舵机(或称之为标准舵机)的电子电路中无MCU微控制器,一般都称之为模拟舵机。老式模拟舵机由功率运算放大器等接成惠斯登电桥,根据接收...

酸酸苹果汁 ⋅ 2014/04/03 ⋅ 0

2017.10.22 Ardupilot开发者大会会议笔记,绝对干货满满!

在国内举办的首届Ardupilot无人机开发者大会,可以说是国内无人机领域的大事情,大咖云集。Ardupilot官方开发者都来到现场,在这里要为他们的开源精神点赞。社区开发者们都很nice,现场会有很...

msq19895070 ⋅ 2017/12/13 ⋅ 0

【易科无人车】1.加装运动控制器

【易科无人车】1.加装运动控制器 首先感谢友商们的赞助,他们提供了车体、单板机、飞控和GPS等设备,使得改造计划能够顺利进行! 我们谨以此系列改造教程来回馈社区! 我们的基本设想是底层采...

Top Liu ⋅ 2017/09/06 ⋅ 0

杰理AC690X系列---关于电机PWM和定时器映射PWM(5)

杰理690X系列的芯片目前只有4路定时器,分别是 Timer0,Timer1,Timer2,Timer3 其中Timer0被系统时钟占用,无法用于PWM输出。 本人前些日子做了一个项目,要求加入手机APP功能,并且还需要支持...

jalls ⋅ 03/23 ⋅ 0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

容器之重命名镜像

使用docker tag命令来重命名镜像名称,先执行help,查看如何使用如下 mjduan@mjduandeMacBook-Pro:~/Docker % docker tag --helpUsage:docker tag SOURCE_IMAGE[:TAG] TARGET_IMAGE[:TA...

汉斯-冯-拉特 ⋅ 6分钟前 ⋅ 0

with 的高级用法

那么 上下文管理器 又是什么呢? 上下文管理器协议包含 __enter__ 和 __exit__ 两个方法。with 语句开始运行时,会在上下文管理器对象上调用 __enter__ 方法。with 语句运行结束后,会在上下...

阿豪boy ⋅ 25分钟前 ⋅ 0

使用 jsoup 模拟登录 urp 教务系统

需要的 jsoup 相关 jar包:https://www.lanzous.com/i1abckj 1、首先打开教务系统的登录页面,F12 开启浏览器调试,注意一下 Request Headers 一栏的 Cookie 选项,我们一会需要拿这个 Cook...

大灰狼时间 ⋅ 25分钟前 ⋅ 0

关于线程的创建

转自自己的笔记: http://note.youdao.com/noteshare?id=87584d4874acdeaf4aa027bdc9cb7324&sub=B49E8956E145476191C3FD1E4AB40DFA 1.创建线程的方法 Java使用Thread类代表线程,所有的线程对......

MarinJ_Shao ⋅ 36分钟前 ⋅ 0

工厂模式学习

1. 参考资料 工厂模式-伯乐在线 三种工厂-思否 深入理解工厂模式 2. 知识点理解 2.1 java三种工厂 简单工厂 工厂模式 抽象工厂 2.2 异同点 逐级复杂 简单工厂通过构造时传入的标识来生产产品...

liuyan_lc ⋅ 48分钟前 ⋅ 0

Java NIO

1.目录 Java IO的历史 Java NIO之Channel Java NIO之Buffer Java NIO之Selector Java NIO之文件处理 Java NIO之Charset Java 可扩展IO 2.简介 “IO的历史”讲述了Java IO API从开始到现在的发...

士别三日 ⋅ 53分钟前 ⋅ 0

[Err] ORA-24344: success with compilation error

从txt文本复制出创建function的脚本,直接执行,然后报错:[Err] ORA-24344: success with compilation error。 突然发现脚本的关键字,居然不是高亮显示。 然后我把脚本前面的空格去掉,执行...

wenzhizhon ⋅ 今天 ⋅ 0

Spring Security授权过程

前言 本文是接上一章Spring Security认证过程进一步分析Spring Security用户名密码登录授权是如何实现得; 类图 调试过程 使用debug方式启动https://github.com/longfeizheng/logback该项目,...

hutaishi ⋅ 今天 ⋅ 0

HAProxy基于KeepAlived实现Web高可用及动静分离

前言 软件负载均衡一般通过两种方式来实现: 基于操作系统的软负载实现 基于第三方应用的软负载实现 LVS是基于Linux操作系统实现的一种软负载,而HAProxy则是基于第三方应用实现的软负载。 ...

寰宇01 ⋅ 今天 ⋅ 0

微软自研处理器的小动作:已经开始移植其他平台的工具链

微软将 Windows 10 、Linux 以及工具链如 C/C++ 和 .NET Core 运行时库、Visual C++ 2017 命令行工具、RyuJIT 编辑器等移植到其自主研发的处理器架构 E2。微软还移植了广泛使用的 LLVM C/C++...

linux-tao ⋅ 今天 ⋅ 0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部