文档章节

【学习】《终身机器学习(Lifelong Machine Learning)》书籍下载

Betty__
 Betty__
发布于 2016/12/02 11:23
字数 386
阅读 154
收藏 1

2016-11-26 机器学习研究会

点击上方“机器学习研究会”可以订阅哦

摘要

 

转自:视觉机器人

终身机器学习(Lifelong Machine Learning)》摘要:
Lifelong Machine Learning (or Lifelong Learning) is an advanced machine learning paradigm that learns continuously, accumulates the knowledge learned in previous tasks, and uses it to help future learning. In the process, the learner becomes more and more knowledgeable and effective at learning. This learning ability is one of the hallmarks of human intelligence. However, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model. It makes no attempt to retain the learned knowledge and use it in future learning. Although this isolated learning paradigm has been very successful, it requires a large number of training examples, and is only suitable for well-defined and narrow tasks. In comparison, we humans can learn effectively with a few examples because we have accumulated so much knowledge in the past which enables us to learn with little data or effort. Lifelong learning aims to achieve this capability. As statistical machine learning matures, it is time to make a major effort to break the isolated learning tradition and to study lifelong learning to bring machine learning to new heights. Applications such as intelligent assistants, chatbots, and physical robots that interact with humans and systems in real-life environments are also calling for such lifelong learning capabilities. Without the ability to accumulate the learned knowledge and use it to learn more knowledge incrementally, a system will probably never be truly intelligent. This book serves as an introductory text and survey to lifelong learning. 
Teaching and Learning: This book is suitable for students, researchers, and practitioners interested in machine learning, data mining, and natural language processing. Lecturers can use the book in class. Lecture slides are available below.

主页:
https://www.cs.uic.edu/~liub/lifelong-machine-learning.html

书籍下载:
https://vk.com/doc-44016343_439142620?hash=a96978fe024d79e455&dl=2e154ea5883bbc8fd6

原文链接:
http://weibo.com/5501429448/Ej9ZGCSUU?from=page_1005055501429448_profile&wvr=6&mod=weibotime&type=comment#_rnd1480160070640

本文转载自:http://mp.weixin.qq.com/s?__biz=MzA4NDEyMzc2Mw==&mid=2649676748&idx=4&sn=d9a34295108ca002d5d2a7604d5

Betty__
粉丝 8
博文 360
码字总数 46678
作品 0
武汉
私信 提问
加载中

评论(1)

小-夜-曲
小-夜-曲
这个好玩
Github | 吴恩达新书《Machine Learning Yearning》完整中文版开源

最近开源了周志华老师的西瓜书《机器学习》纯手推笔记: 博士笔记 | 周志华《机器学习》手推笔记第一章思维导图 [博士笔记 | 周志华《机器学习》手推笔记第二章“模型评估与选择” 博士笔记 ...

计算机视觉联盟
10/13
0
0
CCAI 演讲回顾|刘兵:终身学习、连续学习与元学习

中国人工智能大会是我国人工智能领域规格最高、规模最大、影响力最强的专业会议。时隔一年回顾CCAI 2018大会,我们不难印证,演讲者提出的很多设想与展望都正逐渐成为现实,他们的宝贵经验为...

CCAI2019
08/08
0
0
AlphaGo在围棋界成为最强王者后,我们该如何进行机器学习?

随着AlphaGo在围棋界成为最强王者,科技界掀起了一股机器学习的热潮。那么我们该如何学习呢?接下来我们一起看看著名问答网站QUORA上大牛们对机器学习的看法。 Kevin Murphy(Google数据研究...

【方向】
2017/02/26
0
0
林轩田《机器学习基石》资源汇总(视频+学习笔记+书)

来源 | AI有道(公众号ID:redstonewill) ▌课程介绍 台湾大学林轩田老师的《机器学习基石》课程由浅入深、内容全面,基本涵盖了机器学习领域的很多方面。其作为机器学习的入门和进阶资料非...

heyc861221
2018/05/10
0
0
七本书籍带你打下机器学习和数据科学的数学基础

大多数人学习数据科学的重心放在编程上面,然而,要真正精通数据科学的话是不能够忽视数据科学背后的数据基础。本篇文章,将分享给读者我喜欢的七本有关于数据科学基础的书,下面将逐一为大家...

【方向】
2018/04/20
0
0

没有更多内容

加载失败,请刷新页面

加载更多

java 三元表达式

例子:C=A>B ? 100 :200; 这条语句的意思是,如果A>B的话,就将100赋给C,否则就将200赋给C;

无名氏的程序员
30分钟前
6
0
针对回流和重绘的渲染优化--公司分享

如果是你,你会如何实现浏览器内核,你认为的浏览器渲染的流程是怎么样的 工作开发中,你有做过哪些关于性能优化的工作(代码),或者目前的业务中有哪些是可以做优化的 浏览器渲染机制 什么...

莫西摩西
43分钟前
3
0
html:常见行内标签,常见块级标签,常见自闭合标签

本文转载于:专业的前端网站▷html:常见行内标签,常见块级标签,常见自闭合标签 本文内容: 常见行内标签 常见块级标签 常见自闭合标签 首发日期:2018-02-12 修改: 2018-04-25:删除了不常用...

前端老手
51分钟前
4
0
终日乾乾,含章可贞@20191017

工龄7年,7年里换了两家公司,一次被动,一次主动。一次被动只有暖,一次主动冷暖皆有。第一次,只有遗憾,没有珍惜那段时光。第二次细说一下: 一、老公司 1、离职前,甲方三种态度:恭喜、...

sunny小喵
今天
4
0
zk中leader和follower启动时信息交互

QuorumPeer中读取节点状态信息,不同状态下设置不同角色 1 Leader启动Follower接收器LearnerCnxAcceptor LearnerCnxAcceptor负责接收非leader连接请求,线程中创建LearnerHandler处理器 2 Le...

writeademo
今天
6
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部